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ABSTRACT Some robustness questions in structural equation modeling
(SEM) are introduced. Factors that affect the occurrence of nonconver-
gence and improper solutions are reviewed in detail. Recent research on
the behaviour of estimators for parameters, standard errors and model fit,
under conditions of (non)normality, is summarized. It is emphasized that
both model and sample data characteristics affect the statistical behaviour
of these estimators. This knowledge may be used to set guidelines for a
combined choice of sample size and estimation method. It is concluded
that for large models, under a variety of nonnormal conditions, (robust)
maximum likelihood estimators have relatively good statistical properties
compared to other estimators (GLS, ERLS, ADF or WLS). The cumulative
theoretical knowledge about robust (asymptotic) estimators and corrective
statistics and the availability of practical guidelines from robustness re-
search together, may enhance statistical practice in SEM and hence lead
to more sensible and solid applied research.

1 Introduction

In maximum likelihood (ML) estimation of structural equation models the
following statistical assumptions are made: (1) the sample observations,
x1, . . . ,xN , are independently distributed, where xi, i = 1, . . . , N , is a
random vector of k observed variables, (2) each vector xi has a multivariate
normal distribution, xi ∼ Nk(µ,Σ0), (3) the hypothesized model Σ0 =
Σ(θ) is approximately correct, where θ is a vector of t model parameters,
(4) a sample covariance matrix S is analyzed, and (5) the sample size N is
very large, because, given the foregoing assumptions, asymptotic properties
of parameter, standard error and model-fit estimators can be derived.

Each of these five assumptions may raise its own, specific robustness
questions, comprehensively expressed as: What are the consequences with
respect to the model estimates (i.e., parameters, standard errors of param-
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eter estimates, and the fit of the model) if any of these assumptions are
violated? In this chapter, only the robustness against small sample size and
nonnormality is revisited. It is examined what can be learned from certain
aspects of research in that area since the 1980s, and what guidelines re-
garding choice of sample size and SEM estimators can be offered to applied
statisticians, today. Other, equally important robustness issues in SEM are
not treated here.

2 Robustness against Small Sample Size

When researchers have a small sample, say N < 200, and do want to apply
structural equation modeling (SEM), there are two persistent estimation
problems likely to occur: nonconvergence and improper solutions. For both
problems there is no really satisfying solution, given that the sample size
cannot be increased and the user is stuck with his measurement instru-
ments. In this section, some old results on both issues are revisited and
some new ones are added. It is emphasized that the applied researcher
should be well aware of the various factors having an impact on these
two problems, and that some SEM estimators are more robust than others
against the effects of small sample size in these matters.

2.1 Nonconvergence

In the 1980s nonconvergence (NC) meant that the iterative maximum likeli-
hood estimation procedure in LISREL– the only one available in those days
– did not converge within 250 iterations (or more). Empirical evidence
from research in that decade (e.g., Boomsma, 1982, 1983, 1985) generally
revealed that three main factors affect the occurrence of NC in factor mod-
els and, as a consequence, in structural models as well: sample size, size of
factor loadings, and number of indicators per factor. The effect of sample
size is most evident and probably well-known, but the impact of the other
two explanatory variables is far less acknowledged.

Sample size. There is a primary effect of sample size N on the occurrence
of nonconvergence. In general, if the model is correct, NC decreases with
N , and for N > 200 there are hardly any problems (Boomsma, 1983).
The larger the amount of independent sample information the better the
chances to find a solution. This is illustrated in Table 1.1, where U and C
represent uncorrelated and correlated two-factor models, respectively, with
3 or 4 indicators per factor, and small (S), medium (M), and large (L) factor
loadings (see Boomsma, 1983, for details). In Table 1.1, and elsewhere in
this chapter, NR denotes the number of Monte Carlo replications.

Size factor loadings. NC decreases with larger loadings; compare, for
example, Models 3US, 3UM and 3UL in Table 1.1. In terms of population
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TABLE 1.1. Percentage of nonconvergence; ML estimation, NR = 300.

Sample Size
Model 25 50 100 200 400
3US 48 28 13 2
3CS 57 36 15 3
3UM 12 1
3CM 11 1
3UL
3CL 1
4US 27∗ 8 1
4CS 29∗ 8
4UM 1
4CM 2
4UL
4CL

Note: Nearest integers; a blank entry means zero; ∗NR = 100.

covariances σij it implies that NC increases as σij gets closer to zero. Boom-
sma (1985) gave a partial explanation for this phenomenon by inspecting
sign patterns of the observed sample covariances sij linked to same factor:
for some models, inadmissible sign patterns had good predictive value for
NC. For an uncorrelated two-factor model with three indicators per factor
(Model 3US) and N = 50, a prediction rate of 99% was found.

Number of indicators per factor. If the number of indicators per factor
(the NI/NF ratio) increases, NC decreases, that is, the larger the NI/NF
ratio the better; compare, for example, Models 3US and 4US in Table 1.1.

The three factors that influence NC have in common that increasing infor-
mation, in the form of independent observations, more reliable measure-
ments, and a broader empirical enhancement in measuring latent variables
(‘validity’), decreases the occurrence of NC.

These results for factor models from the 1980s were recently confirmed
and generalized by research of Marsh, Hau, Balla, and Grayson (1998); see
also Marsh and Hau (1999). Marsh and his colleagues agree with Booms-
ma’s (1982) recommendations to have at least N = 100 for NI/NF = 3
or 4, and that N > 200 is generally safer. Their generalization was that
NI/NF = 2 requires at least N = 400, and that for NI/NF = 6 or 12 a
sample as small as N = 50 is sufficient. These additional results support a
More is Better conclusion – as they called it – for both N and NI/NF. The
general implication of this research is that there is a mutual compensatory
effect of N and NI/NF: a higher NI/NF ratio may compensate for small
N , and larger N may compensate for a small NI/NF ratio.
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As a consequence Marsh et al. (1998) deduced that it would be unwise to
blindly follow general guidelines (rules of thumb) for the minimum number
of observed variables k, given a sample size N and the size of the model,
quantified by t, the number of parameters to be estimated – or vice versa.
Such guidelines focus on minimum ratios of N/k or N/t. For example, an
admittedly ‘oversimplified guideline,’ often referred to in the literature, is
that of Bentler (1995, p. 6): N/t = 5 for normal or elliptical theory, and
N/t = 10 for arbitrary distributions. Such prescriptions require NI/NF to
be minimal if N small, which could be catastrophical because it would
increase nonconvergence, and improper solutions as well.

Since models are often misspecified by lack of solid theoretical knowledge
and reliable and valid measurement models, some attention to the possible
effects of misspecification on nonconvergence is needed. Chou and Bentler
(1995, p. 42) suggest that NC is caused by model misspecification and
poor starting values. Clearly, reality is not that simple, and it could be
doubted whether there is enough substantial, and unequivocal evidence
for the statement. Boomsma (1985), for example, concluded that there
was hardly any effect of starting values on NC if correct models are being
analyzed. But what about the effects of misspecification? Luijben (1989,
p. 69) and Camstra (1998, p. 89f., p. 114) found no strong indications for
increasing NC with larger misspecifications. However, in a small study on
factor models, Hendriks (1999) observed more NC and more local minima
with increasing misspecification – and even more so with increasing N
(using the LISREL program). When Hendriks and Boomsma re-analyzed
the samples raising these problems, it was found that the use of ‘arbitrary’
starting values removed nonconvergence and local minima. It was concluded
that under misspecified model conditions default starting values may cause
such estimation problems, and its occurrence should be regarded as a first
symptom of model-data discrepancy. More work has to be done in this
area to fully understand the nature of these phenomena. In particular, the
generalizability of these preliminary findings needs to be scrutinized.

2.2 Improper Solutions

Improper solutions (IS) of an estimated structural equation model refer to
cases where one or more variance estimates have negative values – also re-
ferred to as Heywood cases. There is ample empirical evidence that the real
danger for the occurrence of IS is a small sample, but there are additional
factors that matter, similar to those that affect NC. Following Boomsma
(1985), the main factors can be itemized as follows.

Sample size. With increasing N there are less IS; see Table 1.2.

Population covariances. Two cases can be distinguished here. On the
one hand, across comparable models (for example, Models 3US, 3UM and
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TABLE 1.2. Percentage of improper solutions; ML estimation, NR = 300.

Sample Size
Model 25 50 100 200 400
3US 51 41 22 11 3
3CS 47 33 18 6 3
3UM 38 21 11 1
3CM 44 25 6 1
3UL 26 9 1
3CL 24 7 1
4US 47∗ 19 3
4CS 37∗ 15 4 1
4UM 22 5
4CM 27 1
4UL 7 1
4CL 7
Note: Nearest integers; a blank entry means zero; ∗NR = 100.

3UL in Table 1.2) with increasing factor loadings there are less IS. On the
other hand, within a single model (see Boomsma, 1985, Table 6) with in-
creasing population values of variances parameters there are less IS, i.e.,
indicators with the largest loadings in a model show more IS. The latter
phenomenon can be referred to as the Close to Zero case (Van Driel, 1978):
as population variances get closer to zero, the probability of obtaining neg-
ative estimates of those variances increases.

Number of indicators per factor. Factor models with more indicators
evoke less IS, hence, with a larger NI/NF ratio there are less IS; compare,
for example Models 3UM and 4UM in Table 1.2.

It can be noticed that the same or similar factors affect the occurrences
of NC and IS. Both problems are symptoms of empirical underidentifica-
tion (cf. Rindskopf, 1984). Given small amounts of information (roughly to
be translated in terms of independent observations, reliability and valid-
ity of measurements), inconsistencies between an hypothesized model and
the empirical data are more likely to occur. In model estimation this may
trigger either no solution at all, or an inadmissible solution.

In the 1980s, with slow computers and expensive computer time, mostly
small models were being studied, and only the ML estimation procedure
was available. Today, computers are much faster and cheaper in use, and
meanwhile new estimators for SEM are available. Two questions to be
answered next are (1) Can familiar small-model results be generalized to
large models? and (2) Are these other estimators less incommoded with
NC and IS than ML estimators? But other questions arise as well.
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3 Comparing Estimators under Nonnormality

After a meta-analysis of robustness research in SEM, Hoogland and Boom-
sma (1998) concluded that it was necessary to know more about the ro-
bustness of nonnormality in large models, say models with a number of
observed variables k larger than six or eight. Therefore, Hoogland (1999)
studied a variety of such large models using Monte Carlo methods. In this
and following sections an account is given of part of that research, aimed at
the comparison of the behaviour of four estimators under eleven different
conditions of nonnormality and varying sample size.

The estimators being compared were maximum likelihood (ML), gen-
eralized least squares (GLS), elliptical reweighted least squares (ERLS),
and the asymptotically distribution-free (ADF) estimator, in LISREL also
known as the weighted least squares (WLS) estimator.

The eleven distributional conditions (DCs) of the observed variables in
the models under study can be characterized by their skewness γ and kur-
tosis κ. A rough summary of these conditions is given in Table 1.3, showing
minimum, mean and maximum values of skewness and kurtosis over k vari-
ables. Condition A represents the normal case (no skewness, no kurtosis),
conditions B through E are slightly nonnormal, and from condition F to K
nonnormality further increases. See Hoogland (1999) for further details.

The procedure by which variables with specific skewness and kurtosis
were generated is that of Vale and Maurelli (1983), as implemented in the
EQS program (Bentler, 1995) that was also used for model estimation.

The sample size of the generated samples was N = 200, 400, 800, 1600. In
special cases for ADF a sample size as large as N = 4500 was used. In the

TABLE 1.3. Distributional conditions A through K.

Skewness γ Kurtosis κ

DC min. mean max. min. mean max.
A
B −.5 −.5 −.5
C −.4 −.6 −.8
D 1 1 1
E −1 −1 −1
F 2 2 2
G .4 .6 .8 2 2 2
H −2 2 −1 3.5 8
I 6 6 6
J 2 6 8
K 1.2 1.6 2 6 6 6

Source: Hoogland (1998, Table 5.1, p. 69).

Note: A blank entry means zero.
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FIGURE 1.1. A single factor with three indicators in Model 35L7.

Monte Carlo study NR = 300 admissible replications were used throughout.
Both factor models and structural models were studied. The factor mod-

els varied by three characteristics: (1) the number of indicators per factor,
(2) the number of latent variables, and (3) the size the factor loadings λ.
Hence, model complexity (number of estimated parameters t) and the num-
ber of degrees of freedom (df) varied implicitly. In this chapter, results are
mainly illustrated for a typical measurement model, namely Factor Model
35L7. The research conclusions in this chapter are drawn generally, how-
ever, based on results obtained for all models that were investigated.

Factor Model 35L7 represents a population model with 3 indicators for
each of the 5 correlated factors and an average factor Loading, λ, of 0.7.
A single factor and its indicators from this five-factor model is shown in
Figure 1.1; each factor in Model 35L7 is similar, and the correlations, φ,
among factors are all equal to 0.3. For identification purposes the variances
of the latent variables were standardized to one. Hence, Model 35L7 has
k = 15 observed variables, the number of free parameters t = 40, and
df = 80. This is a relatively large model.

4 Nonconvergence and Heywood Cases Revisited

The four estimation methods clearly differ in the probability by which
nonconvergent and improper solutions are obtained under different distri-
butional conditions and for different sample sizes. Table 1.4 shows results
for Factor Models 35L7 and 35L5 (three indicators for each of the five 0.3
correlated factors with an average factor loading of 0.5) for N = 200.

Clearly, ML and ERLS give the least problems; GLS is worse than ML
regarding IS. For a sample size as common as N = 200, ADF is a disaster
with more than one-third of the solutions being improper; and for some
factor models percentages even raise to 40% IS if N = 200. It is noted that
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TABLE 1.4. Percentages of nonconvergence (NC) and improper solutions
(IS); Factor Models 35L5 and 35L7, N = 200, NR = 300.

Model 35L5 Model 35L7

ML/ERLS GLS ADF ML/ERLS GLS ADF
DC NC IS NC IS NC IS NC IS NC IS NC IS

A .4 5.0 .2 10.0 5.2 35.4 .3 1.2 10.7
B .2 4.8 .2 10.1 4.8 33.3 .9 9.6
C 5.2 .2 10.4 3.1 32.9 1.2 11.2
D .2 4.9 .2 9.4 4.1 34.8 .3 1.4 .3 12.7
E .4 4.1 10.0 2.8 30.8 .6 7.1
F .4 4.6 .4 8.0 5.0 35.8 .3 1.7 .9 12.6
G 6.2 9.9 3.9 36.0 .3 1.2 .3 11.1
H 6.4 8.4 2.9 35.2 .6 1.1 .3 13.5
I .3 4.7 .2 8.5 4.7 40.5 .5 1.4 1.4 17.1
J .2 5.3 9.0 5.5 38.3 .8 1.6 1.9 17.4
K 8.1 .4 13.3 2.9 33.1 .6 1.1 .9 12.5

Note: A blank entry means zero.

their are hardly any effects of the degree of nonnormality on NC and IS.
For larger sample sizes the problems are negligible, except for ADF.

If the results for Models 35L5 (λ = 0.5) and 35L7 (λ = 0.7) are compared
(see Table 1.4), it is clear that NC and IS both decrease with increasing
values of factor loadings, or increasing population covariances σij.

The importance of the factors studied for their effect on the occurrence
of NC and IS are recapitulated as follows.

• Sample size. As expected, a larger sample size N gives less NC and IS,
for all estimation methods. For N > 200 there were hardly any problems,
except for ADF as far as Heywood cases are concerned (see Hoogland,
1999, p. 97). For N ≥ 400 the percentage of IS is at most 1.6% for ADF.

• Size factor loadings. As expected, models with larger loadings have
less NC and IS, for all estimation methods.

• Number of indicators per factor. As expected, models with a larger
NI/NF ratio have less NC and IS, for all estimation methods.

• Model complexity. The more parameters to be estimated, i.e., the
larger t, the more NC and IS will occur. This was expected from an in-
formation point of view: if the estimation requirements are larger, more
information is needed. Thus, if the sample size and the factor loadings are
about the same, more trouble is expected regarding NC and IS as model
complexity increases. However, no strong effect was found. For ML it was
only relevant in DC K. For ADF the effects are notably, however, and
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mainly due to the fact that increasing t is associated with an increased
number of observed variables k, and the latter affects the size of the weight
matrix W−1. Due to larger unstability in ADF estimation of W−1 with
increasing k, the number of NC/IS problems increases as well.

• Degree of nonnormality. This factor has no systematic effects on NC
and IS, except for ADF. For the latter method it holds that when the
kurtosis increases IS increases. As for explanations, it should be realized
that ADF requires estimates of 4th order moments, and standard er-
rors of sample moments are a function of moments of population density
functions and sample size (cf. Kendall & Stuart, 1958, p. 243).

5 Bias of Estimators and Minimum Sample Size

Consider the following question, which is implicitly of major practical in-
terest. What is an acceptable size of the bias of estimators of parameters,
of corresponding standard errors and of model fit? There is no easy and
unequivocal answer to this question. First, criteria for acceptable bias are
subjective, although in the literature some conventions are noticeable. Sec-
ond, specific amounts of bias might be judged differentially disturbing for
dissimilar types of parameters. The criteria that were used in defining ac-
ceptable bias are given below; see Hoogland (1999, p. 30ff.) for details on
the foundations of the decisions involved.

Bias of Parameter Estimators
The relative bias of an estimator θ̂j for population parameter θj is defined as

B(θ̂j ) =
θ̂j − θj

θj
, j = 1, 2, . . . , t , (1.1)

where θ̂j is the mean of the parameter estimates over 300 replications.
In comparing the bias of parameter estimators the criterion of the mean

absolute relative bias (MARB) was used. The MARB of a parameter esti-
mator should be less than 0.025; in formula

MARB(θ̂j) =
1
t

t∑

j=1

| B(θ̂j ) | < 0.025 , j = 1, 2, . . . , t . (1.2)

Bias of Standard Error Estimators
The relative bias of estimators for the standard error of parameter esti-
mates, ŝe(θ̂j), is defined as

B[ŝe(θ̂j )] =
ŝe(θ̂j )− SD(θ̂j)

SD(θ̂j)
, j = 1, 2, . . . , t , (1.3)
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where ŝe(θ̂j) is the mean of the estimated standard errors and SD(θ̂j) is
the standard deviation of the parameter estimates, both calculated over
NR = 300 replications.

The criterion for an acceptable bias of standard error estimators for θ̂j

was that the mean absolute relative bias of the estimators should be less
than 0.05, i.e.,

MARB[ŝe(θ̂j)] =
1
t

t∑

j=1

| B[ŝe(θ̂j )] | < 0.05 , j = 1, 2, . . . , t . (1.4)

Bias of the Chi-Square Test Statistic
To evaluate the behaviour of the chi-square model test statistic T , which
equals (N − 1) times the minimum value of the fit function of the model,
two criteria are used in this chapter. [Other criteria, not reported here,
were employed as well; see Hoogland (1999, p. 31f., p. 62f.) for details.]

First, the rejection frequency (RF ) of the model over NR = 300 replica-
tions, given a significance level α = 0.05. Given NR and α, this rejection
frequency has a binomial distribution, i.e., RF ∼ Bin(NR, α). A 99% pre-
diction interval for RF , in our case [7, 27], was used as a criterion for
acceptable behaviour of the fit statistic T . For adequate behaviour of T ,
the observed value of the RF should lie within this prediction interval.

Second, the mean value of chi-square test statistic over NR = 300 repli-
cations, denoted as T . Using a Student t test statistic,

t∗ =
(T − df)

√
NR − 1

SD(T )
, (1.5)

the bias of the chi-square test statistic T was taken to be acceptable if the
null hypothesis H0 : E(T ) = df is not rejected at α = 0.01.

Required Minimum Sample Size for Acceptable Bias
Another important practical question, for applied researchers and statisti-
cian alike, is: What is the minimal sufficient sample size required to stay
within acceptable ranges of bias for estimates of parameters, correspond-
ing standard errors and model fit? The procedures that were followed to
come to conclusions and recommendations regarding this question are too
complex to be summarized in a few lines; they were described in detail by
Hoogland (1999).

In the following sections guidelines are given with respect to the mini-
mum sample size required for obtaining acceptable bias of estimators ac-
cording to the criteria defined above. It should be noted here, that although
the emphasis in this chapter is on bias of the estimators, their variances
and mean squared errors (MSEs) were also considered. Where necessary,
attention is also paid to these statistical properties of SEM estimators.
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6 Parameter Estimators

Bias of Parameter Estimators
Four estimators were compared on the minimum sample size needed for
an acceptable bias according to the mean absolute relative bias (MARB)
criterion, as defined by (1.2). The results are summarized in Table 1.5. In
the first column of this table the distributional conditions are categorized
by degree of nonnormality, which is additionally quantified by ranges of
κa over sample size N , the mean of the average empirical kurtosis over 15
variables and 300 admissible replications, respectively. For the nonnormal
distributional conditions I, J, and K, the values of κa calculated over k = 15
variables and NR = 300 replications lie in the range [4.5, 5.8], which is
indicative of large positive kurtosis.

The numbers in this table – and in similar tables to follow – are the
minimum sample size needed to obtain acceptable bias according to (1.2).
Boldface values of N indicate absence of bias for that size; otherwise the
sign to the right of the minimum required N denotes whether the bias is
negative or positive for that size. From Table 1.5 is can be seen that ML
and ERLS do well for N ≥ 200, even under conditions of severe nonnor-
mality. GLS and ADF underestimate parameters for sample sizes N ≥ 800
(although results were quite model dependent). There were hardly any ef-
fects of nonnormality on the bias of parameter estimators, except for ADF,
as illustrated below. In general it was found that the bias of ML decreases
with a larger NI/NF ratio.

Figure 1.2 illustrates the effect of sample size on the MARB for Model
35L7 under the nonnormal, kurtotic condition K. It can be concluded that
the MARB drops linearly with 1/

√
N . ADF and GLS clearly behave worst.

In general, considering the results for all models under study, ADF shows a
strong effect of κ on its relative bias. For Model 35L7, to achieve acceptable
bias in parameter estimation ADF would require N = 3600 for condition K.

Sample Size and Acceptable Bias for ADF
Based on all empirical findings from our research, some general conditions
for almost unbiased θ̂ADF estimators can be formulated. Within the design
of our Monte Carlo study – that is, not considering distributional conditions

TABLE 1.5. Sufficient sample size for acceptable bias of parameter estima-
tors; Factor Model 35L7, NR = 300.

DC κa ML GLS ERLS ADF
A, B, C −0.5, 0.0 200 800 − 200 800 −

D 0.9, 1.0 200 800 − 200 1600 −
E −1.0, −1.0 200 800 − 200 800 −

F, G, H 1.7, 3.4 200 800 − 200 1600 −
I, J, K 4.5, 5.8 200 800 − 200 >1600 −
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FIGURE 1.2. The MARB of parameter estimators under nonnormal condi-
tion K with γ = 1.6, κ = 6.0; Factor Model 35L7, NR = 300.

outside the range A through K (see Table 1.3), nor generalizing to any other
DCs – for a given range of mean kurtosis κ among the investigated DCs,
the required N for ADF is a linear function of the number of variables k.
General requirements for acceptable parameter bias can be summarized,
provisionally, as follows (cf. Hoogland, 1999, p. 140):

if −1 ≤ κ ≤ 0 then N ≥ 50k ,

if 0 < κ ≤ 3 then N ≥ 100k ,

if 3 < κ ≤ 6 then N ≥ 250k .

These guidelines should be interpreted cautiously, because – apart from
the kurtosis – they are formulated rather unconditionally; presently, the
authors are studying their general validity in more detail, which may well
lead to slightly refined recommendations. Nevertheless, the implications of
these guidelines reaffirm the long-known fact that ADF needs very large
sample sizes. What was not known as clearly, is that increasingly more
observations are needed with increasing normality violations. The required
sample size is a function of kurtosis and model complexity. Therefore, it is
concluded that with a finite sample size the ADF estimator is not free from
distributional effects! It is only an asymptotically distribution-free method.

Variance and Mean Squared Error of Parameter Estimators
Besides the bias, the variance and the mean squared error (MSE) of estima-
tors are of statistical interest. The standard deviation (SD) of parameter es-
timators, for individual parameters denoted as SD(θ̂j), was simultaneously
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TABLE 1.6. Mean standard deviation of estimators: 100 × SD(θ̂); Factor
Model 35L7, N = 200, NR = 300

Distributional Condition
A B C D E F G H I J K

ML 8 8 8 8 8 9 9 9 10 10 11
ADF 11 11 11 11 10 12 12 11 13 13 12

estimated for different types of model parameters. For all parameters θ
taken together, it was calculated as the mean SD of parameter estimates
over t parameters in NR = 300 replications, and denoted as SD(θ̂). Find-
ings for ML and ADF, regarding all parameters, are given in Table 1.6.
The results were about the same for separate types of parameters.

The most important finding was that the average SD of θ̂ for ML, GLS
and ERLS turns out to be equal up to two decimal places for different types
of parameters; ADF being close to that result. Thus, hardly any differences
between estimators were found. In addition, it is noteworthy that only a
small effect of nonnormality was observed; see Table 1.6.

It is concluded that the parameter estimators differ in bias but not in
variance. It is therefore unnecessary to compare their MSEs.

7 Robust Standard Errors and Fit Statistics

Before turning to standard errors and model fit statistics, an intermezzo on
robust alternatives for regular – but not robust – estimators is necessary,
because in the following sections regular (uncorrected) and robust (correc-
tive) estimators are being compared as well. The following two examples
illustrate the need for robust estimators.

First, it is known from the literature (e.g., Boomsma, 1983) that ML
estimators of standard errors and global model fit are not robust against
nonnormality. So the question arises: What actions can be taken in the
presence of nonnormal data?

Second, in the previous section the bad behaviour of the asymptotic
distribution-free method was exemplified. It is also known for at least fifteen
years that ADF does not perform well when models are complex and when
the sample size is small; see, e.g., Muthén and Kaplan (1985, 1990). The
main reason for that is that ADF estimation involves the estimation and
inversion of a matrix of 4th-order sample moments, resulting in some weight
matrix W−1. If that matrix is large, depending on k, and if N is small,
the estimated weight matrix is unstable, with the painful consequence that
parameter estimates, and even more so the estimates of standard errors
and model fit, are unreliable to an unacceptable degree.
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Some analytical and statistical relief for the nonrobustness of ML against
nonnormality and for the nonrobustness of ADF against small sample size,
is offered by the development of robust (asymptotic) inferential statistics,
and of what might be called robust, corrective statistics.

• Robust (asymptotic) inferential statistics do not require 4th-order
sample moments and therefore do not suffer from the pitfalls of having
an unstably estimated weight matrix. Also, under specific conditions
of stochastic independence, these robust estimation methods produce
asymptotic standard errors and model test statistics which are valid
for any distribution of the data. This leads to the almost paradoxical
consequence that normal ML theory works well under nonnormal-
ity. Reviews of this type of work, that has a long history and broad
backgrounds, were given by Satorra (1990, 1992).

• Robust, corrective statistics, for example robust standard error es-
timators and robust model test statistics are supposed to be more
robust against violations of the assumptions of large sample size and
nonnormality than regular estimators. An overview of these robust,
corrective statistics was given by Satorra and Bentler (1994); cor-
responding LISREL formulas can be found in Jöreskog, Sörbom, Du
Toit, and Du Toit (1999).

In this chapter three robust statistics are considered that might help to
improve regular estimates of standard errors or model fit. Notice that they
all do require estimates of 4th-order moments of observed variables.

1. RML. Robust ML standard errors, which were calculated under non-
normality assumptions with the EQS program (Bentler, 1995); see
Browne (1984), or Bentler and Dijkstra (1985) for theoretical details.

2. SML. The Scaled ML test statistic TSB of Satorra and Bentler (1988,
1994), which has asymptotically a correct mean. Earlier research on
small models showed promising behaviour of this TSB statistic (see,
for example, Satorra & Bentler, 1988; Chou, Bentler, & Satorra, 1991;
Hu, Bentler, & Kano, 1992; and Curran, West, & Finch, 1996).

3. YBA. Yuan and Bentler’s (1997) corrected ADF test statistic TYB .
So far, the statistical properties of this statistic have not been sup-
ported by much additional empirical research.

8 Standard Error Estimators

Bias of Standard Error Estimators
A comparison of the bias of standard error estimators in Model 35L7 for
N = 800, 1600 is given in Table 1.7. It can be seen that there are no
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TABLE 1.7. MARB of standard error estimators: 100 × MARB of ŝe(θ̂j);
Factor Model 35L7, N = 800, 1600, NR = 300.

N = 800 N = 1600
DC ML RML GLS ERLS ADF ML RML GLS ERLS ADF

A 3 3 4 3 14 3 3 3 3 7
B 4 3 4 3 14 5 3 4 4 7
C 4 3 5 4 15 5 3 5 4 8
D 7 4 7 5 14 6 3 7 4 7
E 6 3 6 5 14 7 3 7 6 7
F 11 4 11 7 14 11 3 11 7 7
G 12 4 13 7 14 12 3 12 7 7
H 14 4 14 14 15 13 3 13 14 8
I 24 5 24 16 16 24 4 24 16 8
J 24 5 24 15 16 23 4 23 15 8
K 28 4 28 15 17 27 4 27 15 9

large differences between the traditional uncorrected ML, GLS, and ERLS
(DCs A through E). ADF performs relatively poorly in small samples if
nonnormality is small (DCs A through G); for N = 1600 ADF outperforms
ML if nonnormality is large. It should be noted that for N = 800 the
differences between ADF and other methods were not very large, but for
N = 200, 400 ADF standard error estimators were rather bad indeed.

Of specific interest is the comparison of ML and its robust counterpart
RML. From Table 1.7 it is clear that RML is an improvement over ML –
and the other methods – for DCs F through K, by reducing the MARB of
the standard error estimator considerably.

In Figure 1.3, for the kurtotic distributional condition K the MARB of
five standard error estimators is plotted as a function of sample size N .

Within the research framework, it can generally be concluded that the
bias of RML is overall smallest if N ≥ 400 and | κ | ≥ 1. The RML estimator
is quite robust against nonnormality. A second general conclusion is that
the behaviour of ADF is relative good if N ≥ 1600 (although results were
quite model dependent). Figure 1.3 shows a clear effect of sample size for
ADF: the MARB is decreasing linearly with 1/

√
N . For an acceptable bias

of estimated standard errors in Model 35L7, however, ADF still would need
N = 4500 observations (cf. Hoogland, 1999, Table 6.6).

The question to be answered now is what a sufficient sample size is
for standard error estimators to have an acceptable bias according to the
MARB criterion (1.4). In Table 1.8 the results for Model 35L7 are given,
from which it can be concluded that RML outperforms all other estimators,
except ML and ERLS under pretty normal conditions. Still, with increasing
nonnormality some hundreds of observations are needed for RML.
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FIGURE 1.3. The MARB of standard error estimators under nonnormal
condition K with γ = 1.6, κa = 6.0; Factor Model 35L7, NR = 300.

GLS (nonnormal DCs) and ADF (overall) need very large number of
observations. General rules of thumb – applicable within our research design
– for a required minimum sample size for an almost unbiased ŝe(θ̂j) with
ADF are: if κ = 0 then N ≥ 10k(k + 1), and if 0 < κ < 5.7 then N ≥
15k(k + 1), but under all circumstances N ≥ 400 is required.

The conclusions regarding the bias of standard error estimators can be
summarized as follows.

• ‘Normal’ conditions (| κ | < 0.5). ML, RML, and ERLS are acceptable
at a minimum sample size N = 400, if λ ≥ 0.7. ADF needs a much larger
sample size than ML. Smaller population loadings require larger N .

TABLE 1.8. Sufficient sample size for acceptable bias of standard error es-
timators; Factor Model 35L7, NR = 300.

DC κa ML RML GLS ERLS ADF

A, B −0.5, 0.0 200 200 400 − 200 � −
C 0.0, 0.0 400 − 200 � − 200 � −
D 0.9, 1.0 � − 400 − � − 400 − � −
E −1.0, −1.0 � + 200 � + � ± � −

F, G 1.7, 2.0 � − 400 − � − � − � −
H 2.7, 3.4 � − 400 − � − � ± � −

I, J, K 4.5, 5.8 � − 800 − � − � − � −
Note: � a sample of size N > 1600 is required.
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• Nonnormal conditions (| κ | ≥ 1). The RML estimator is preferred,
but it needs at least N ≥ 400. For other estimators, including ADF,
N = 1600 is insufficient.

• All conditions (DCs A through K, that is). Underestimation of ŝe(θ̂j)
is expected when N is too small (κ > 0). Inflation of ŝe(θ̂j) is expected if
κ ≤ −1; distributional conditions with large negative kurtosis were out-
side the range of the research design.

Most frequently, progressive testing of model parameters is expected
to occur when κ > 0, i.e., the null hypothesis H0 : θj = 0 is rejected too
often. Since parameter estimation is often unbiased, users should be en-
couraged to look primarily at the substantive relevance of the estimated
values of model parameters.

Variance of Standard Error Estimators
When comparing ML with its robust counterpart RML in estimating stan-
dard errors of parameter estimates, the variance and the mean squared
error (MSE) of these estimators were also investigated. RML did not im-
prove as fast over ML as when only bias is considered. This is due to the
fact that the variance of individual RML parameter estimators can be five
times larger than that of ML estimators. In Table 1.9 the average MSE
of ML and RML standard error estimators are compared. The mean MSE
is calculated over all t = 40 parameters θ. The numbers in the table are
10, 000 times the difference MSE[ŝe(θ̂ML)]−MSE[ŝe(θ̂RML)]. Hence, it can
be noted that the actual MSEs are relatively small, and so are the differ-
ences between the two estimators. For instance, for N = 200 and normal
condition A, the value of −.4 in Table 1.9 reflects the actual difference in
mean MSE over 40 model parameters: 0.00006− 0.00010.

From Table 1.9 it is obvious that regarding all parameters, the differences
in meanMSE depends on the sample size N and the degree of nonnormality.

TABLE 1.9. Differences in average MSE of the ML and RML standard error
estimators over all parameters: 10, 000×(MSEML−MSERML); Factor Model
35L7, NR = 300.

Distributional Condition
N A B C D E F G H I J K
200 −.4 −.2 −.4 −.6 −.8 −.8 −1.4 −.2 2.3
400 −.1 −.1 −.1 −.1 −.1 −.1 −.1 1.4 1.2 2.3
800 .1 .1 .3 1.3 1.1 2.0

1600 .1 .1 .3 .9 .8 1.2
Note: A blank entry means zero.
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With increasing N and increasing nonnormality, RML behaves increasingly
better relative to ML. In terms of MSE, for N = 200 RML is better than
ML for DC K only; for N = 400 it is better for DCs I through K; and for
N = 1600 it is better for all distributional conditions. In conclusion, RML
has to be preferred over ML when serious deviations from normality occur
and N is not too small.

9 Chi-Square Model Test Statistics

In the comparison of estimators for the chi-square model fit statistic T , the
model rejection frequency RF , the bias of T , and its variance are examined
subsequently. The relevant statistics were defined in Section 5.

Model Rejection Frequency
From the results in Table 1.10 it can be observed that under normal con-
ditions for N = 200, (1) GLS and YBA are conservative estimators, (2)
ADF is very progressive (rejecting the correct model far too often), and
(3) YBA gives an adequate correction to ADF. With the larger sample size
N = 1600, (1) SML is not better than ML, nor is it for N = 200, and (2)
YBA is still better than ADF, in general showing slight overrejection.

In contrast, under nonnormal conditions (see the bottom panel of Ta-
ble 1.10), the following conclusions can be drawn. First, SML shows ap-
propriate behaviour (progressive if N = 200), and the same holds for YBA
(conservative if N = 200). Second, ADF strongly improves with increas-
ing N . Third, ML and GLS have a larger rejection frequency when (a) the
model has larger loadings, and (b) there are more indicators per factor.

TABLE 1.10. The chi-square model rejection frequency at level α = 0.05:
% Reject − 5; normal condition A (top panel), and nonnormal condition K
with γ = 1.6, κ = 6.0 (bottom panel), N = 200, 1600, NR = 300

DC A N = 200 N = 1600
Model ML SML GLS ERLS ADF YBA ML SML GLS ERLS ADF YBA

34L5 −2 1 −3 −2 28 −4 1 2 2 1 7 2
44L5 3 4 −2 −1 94 −4 1 1 −1 12 1
35L5 −3 1 −4 −3 83 −5 2 1 2 5 1
35L7 3 6 −1 2 89 −3 1 2 1 1 7 1

DC K N = 200 N = 1600
Model ML SML GLS ERLS ADF YBA ML SML GLS ERLS ADF YBA

34L5 8 1 1 −5 24 −5 6 1 6 −5 3 2
44L5 15 5 3 −4 95 −5 12 1 10 −5 8 1
35L5 10 3 −1 −5 82 −5 9 1 7 −5 6 −1
35L7 24 5 6 −5 88 −4 23 3 20 −5 6

Note: A blank entry means zero.
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TABLE 1.11. Sufficient sample size for acceptable rejection frequency at
level α = 0.05; Factor Model 35L7, NR = 300

DC ML SML GLS ERLS ADF YBA

A 200 400 + 200 200 � + 200
B 200 400 + 200 400 + � + 400 −
C 1600 + 400 + 200 200 � + 200
D 200 400 + 200 1600 − � + 400 −
E 400 + 400 + 200 1600 + � + 200
F 400 + 400 + 200 � − � + 400 −
G 800 + 400 + 200 � − � + 200
H 200 800 + 200 � − � + 400 −
I � + 800 + � + � − � + 800 −
J � + 800 + 200 � − � + 400 −
K � + 400 + � + � − � + 800 −

Note: � a sample of size N > 1600 is required.

Of course, where the whole distribution of T is involved, it is limited
to consider only the behaviour of this statistic for overall model fit at a
significance level at α = 0.05, but in practice that tail area is still the
most inspected one. Despite this restriction, next to other criteria the RF
criterion was used to decide what a minimal sufficient sample size would
be, i.e., the RF should be within a 99% prediction interval (see Section 5).
On that limited basis first, some general conclusions can be drawn. The
results for Model 35L7 are given in Table 1.11.

In general then, SML gives an appropriate correction to ML under con-
ditions of nonnormality (κ = 6 for DCs I, J, and K), but overall it needs
at least N ≥ 400. The correction of YBA on ADF is effective and suitable
throughout; in general, however, ADF would need at least N = 3600 for
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FIGURE 1.4. The distribution of the model fit statistic for ML and SML
under nonnormal condition K with γ = 1.6, κ = 6; Factor Model 35L7,
df = 80 N = 400, NR = 300.
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FIGURE 1.5. Mean value of model test statistic T ; Factor Model 35L7,
df = 80, N = 400, 1600, NR = 300.

df = 80; cf. Hoogland (1999, Table 6.7, p. 143). GLS behaves remarkably
well, although results are rather model dependent (cf. Olsson, Troye, &
Howell, 1999, for similar findings). Finally, ERLS is not robust at all, and
not only with regard to the RF , as will be seen next.

The corrective effect of the scaled test statistic TSB on the ordinary ML
test statistic T is illustrated in Figure 1.4. The shift in the distribution to
the correct mean value under nonnormal condition K is clearly visible.

Bias of the Chi-Square Model Test Statistic
In addition to an inspection of the right tail of the distribution of the
chi-square model fit statistic T for different estimation procedures, it is of
interest to check the expected value of T , or its bias. In Figure 1.5 it can be
noticed that ERLS is severely underestimating the expected value of df =
80 under nonnormal conditions, and increasingly so with larger kurtosis. In
contrast, ADF is overestimating the expected value, but improves rapidly
as N gets larger.

Variance of the Chi-Square Model Test Statistic
Apart from the bias of the model fit statistic T , its variance was studied. For
Model 35L7 the standard deviation of six different estimators are shown
in Figure 1.6. Under the correct model the expected standard deviation
E[SD(T )] =

√
160 = 12.65. In general it can be observed that ADF has too

large a variance, and YBA slightly too small. Here, a reference is made to
the idea of the adjusted test statistic T , introduced by Satorra and Bentler
(1994, p. 408) to attain, asymptotically at least, both a correct mean and
a correct variance. Finally, it was observed that for large deviations from
normality (DCs I, J, and K) the variance of SML is slightly smaller than
that of ML.
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FIGURE 1.6. Standard deviation of model test statistic T ; Factor Model
35L7, df = 80, N = 400, NR = 300.

Minimum Sample Size Required
For the investigation of the minimal sample size necessary for T to have
an acceptable bias, the criterion of not rejecting H0 : E(T ) = df was ap-
plied. In Table 1.12 results are presented for Model 35L7. In general it was
concluded that SML is acceptable for N ≥ 800 (overestimation), but it still
needs N = 1600 under nonnormality. Also, ADF needs at least N = 3600
for df = 80, and YBA is acceptable at N = 1600 (overestimation). The
required sample sizes are overall quite large, which may be partly due to
the substantial power of the criterion test, given NR = 300 replications.
It should also be emphasized that these sufficient sample size results were
very model dependent.

TABLE 1.12. Sufficient sample size for acceptable mean value of model test
statistic T ; Factor Model 35L7, NR = 300.

DC ML SML GLS ERLS ADF YBA

A 800 + 800 + 400 − 200 � + 1600 +
B 800 + 800 + 400 − � + � + 1600 +
C � + 800 + 200 200 � + 800 +
D 800 + 1600 + 400 − � − � + 1600 +
E 800 + 800 + 400 − � + � + 1600 +
F 1600 + 1600 + 400 − � − � + 1600 +
G � + 1600 + 1600 + � − � + 1600 +
H 1600 + 800 + 400 − � − � + 1600 +

I, J, K � + 1600 + � + � − � + 1600 ±
Note: � a sample of size N > 1600 is required.
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10 Discussion

In this chapter, some well-known facts were affirmed: (1) in samples of
size N ≤ 200, under both normal and nonnormal conditions, problems of
nonconvergence and improper solutions still exist, (2) strong measurement
instruments, both in terms of reliability and validity, may compensate for
small sample size to reduce the number of nonconvergent and improper
solutions, and (3) parameter estimation is least problematic, whereas esti-
mation of standard errors and the chi-square test statistic for global model
fit is of major concern when sample size is small and, more seriously, under
violation of normality assumptions.

It was observed anew that ML is sensitive to violations of nonnormal-
ity, but here other estimation methods also turned out to be nonrobust. It
was affirmed that ERLS was bad in estimating model fit, and that ADF
is very demanding on N . Where GLS was known to behave rather well in
small models, in larger models its behaviour was much worse; for example,
it needs a much larger sample size for acceptable behaviour regarding the
bias of parameter estimates than ML. It was partly known that robust, cor-
rective statistics, like RML, SML, and YBA work rather well; such results
were again found for the larger models that were studied here.

The key objective of robustness research is to offer practical guidelines
for applied work, so as to prevent nonrobust analyses that would inevitably
lead to wrong substantive inferences. Within that framework, a predomi-
nant question is: If structural models are to be analyzed, what estimation
methods have to be preferred under what conditions? And one of the first
specific questions in the planning of SEM research is: What is a minimum
sample size needed for a precise and reliable analysis, conditional on the
data and the model?

It was shown that answers to these questions are conditional on data and
model characteristics alike. In practice, however, applied researchers often
do not know the data and the model characteristics before data collection
and analysis. In new areas of applied research, especially when measure-
ment instruments are in a developing stage, little is known about distribu-
tional characteristics of observed variables. Also, in phases of model explo-
ration there are uncertainties about the complexity of the ‘final models,’
about the number of reliable indicators and the size of factor loadings. It
is evident that with better measurements and stronger theoretical founda-
tions of model structures, it becomes much easier to make proper decisions
on the choice of estimators and the planning of sample size.

Still, to advice applied statisticians on sample size and the choice of
estimators under conditions of (non)normality much more knowledge and
expertise is available than twenty years ago. On the one hand, there has
been much theoretical progress, mainly due to the development of new esti-
mators and ingenious robust statistics, including the emergence of general
procedures for robust statistical inference. On the other hand, robustness
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research has added practical guidelines (1) to accommodate for circum-
stances of finite, small sample size and nonnormalities, and (2) to discour-
age structural modeling when insufficient information is available.
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