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In this article, we provide guidance for substantive researchers on the use of structural equation
modeling in practice for theory testing and development. We present a comprehensive, two-step
modeling approach that employs a series of nested models and sequential chi-square difference tests.
We discuss the comparative advantages of this approach over a one-step approach. Considerations
in specification, assessment of fit, and respecification of measurement models using confirmatory
factor analysis are reviewed. As background to the two-step approach, the distinction between ex-
ploratory and confirmatory analysis, the distinction between complementary approaches for theory
testing versus predictive application, and some developments in estimation methods also are dis-
cussed.

Substantive use of structural equation modeling has been

growing in psychology and the social sciences. One reason for

this is that these confirmatory methods (e.g., Bentler, 1983;

Browne, 1984; Joreskog, 1978)provide researchers withacom-

prehensive means for assessing and modifying theoretical

models. As such, they offer great potential for furthering theory

development. Because of their relative sophistication, however,

a number of problems and pitfalls in their application can hin-

der this potential from being realized. The purpose of this arti-

cle is to provide some guidance for substantive researchers on

the use of structural equation modeling in practice for theory

testing and development. We present a comprehensive, two-step

modeling approach that provides a basis for making meaningful

inferences about theoretical constructs and their interrelations,

as well as avoiding some specious inferences.

The model-building task can be thought of as the analysis of

two conceptually distinct models (Anderson & Gerbing, 1982;

Joreskog & Sorbom, 1984). A confirmatory measurement, or

factor analysis, model specifies the relations of the observed

measures to their posited underlying constructs, with the con-

structs allowed to intercorrelate freely. A confirmatory struc-

tural model then specifies the causal relations of the constructs

to one another, as posited by some theory. With full-informa-

tion estimation methods, such as those provided in the EQS

(Bentler, 1985) or LISREL (Joreskog & Sorbom, 1984) programs,

the measurement and structural submodels can be estimated

simultaneously. The ability to do this in a one-step analysis ap-
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proach, however, does not necessarily mean that it is the pre-

ferred way to accomplish the model-building task.

In this article, we contend that there is much to gain in theory

testing and the assessment of construct validity from separate

estimation (and respecification) of the measurement model

prior to the simultaneous estimation of the measurement and

structural submodels. The measurement model in conjunction

with the structural model enables a comprehensive, confirma-

tory assessment of construct validity (Bentler, 1978). The mea-

surement model provides a confirmatory assessment of conver-

gent validity and discriminant validity (Campbell & Fiske,

1959). Given acceptable convergent and discriminant validi-

ties, the test of the structural model then constitutes a confir-

matory assessment of nomological validity (Campbell, 1960;

Cronbach & Meehl, 1955).

The organization of the article is as follows: As background

to the two-step approach, we begin with a section in which we

discuss the distinction between exploratory and confirmatory

analysis, the distinction between complementary modeling ap-

proaches for theory testing versus predictive application, and

some developments in estimation methods. Following this, we

present the confirmatory measurement model; discuss the need

for unidimensional measurement; and then consider the areas

of specification, assessment of fit, and respecification in turn.

In the next section, after briefly reviewing the confirmatory

structural model, we present a two-step modeling approach
and, in doing so, discuss the comparative advantages of this two-

step approach over a one-step approach.

Background

Exploratory Versus Confirmatory Analyses

Although it is convenient to distinguish between exploratory

and confirmatory research, in practice this distinction is not as

clear-cut. As Joreskog (1974) noted, "Many investigations are to

some extent both exploratory and confirmatory, since they involve
some variables of known and other variables of unknown compc-
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sition" (p. 2). Rather than as a strict dichotomy, then, the distinc-
tion in practice between exploratory and confirmatory analysis
can be thought of as that of an ordered progression. Factor analysis
can be used to illustrate this progression.

An exploratory factor analysis in which there is no prior speci-
fication of the number of factors is exclusively exploratory. Using
a maximum likelihood (ML) or generalized least squares (GLS)
exploratory program represents the next step in the progression,
in that a hypothesized number of underlying factors can be speci-
fied and the goodness of fit of the resulting solution can be tested.
At this point, there is a demarcation where one moves from an
exploratory program to a confirmatory program. Now, a measure-
ment model needs to be specified a priori, although the parameter
values themselves are freely estimated. Although this has histori-
cally been referred to as confirmatory analysis, a more descriptive
term might be restricted analysis, in that the values for many of
the parameters have been restricted a priori, typically to zero.

Because initially specified measurement models almost invari-
ably fail to provide acceptable fit, the necessary respecification and
reestimation using the same data mean that the analysis is not
exclusively confirmatory. After acceptable fit has been achieved
with a series of respecincations, the next step in the progression
would be to cross-validate the final model on another sample
drawn from the population to which the results are to be general-
ized. This cross-validation would be accomplished by specifying
the same model with freely estimated parameters or, in what repre-
sents the quintessential confirmatory analysis, the same model
with the parameter estimates constrained to the previously esti-
mated values.

Complementary Approaches for Theory Testing Versus

Predictive Application

A fundamental distinction can be made between the use of

structural equation modeling for theory testing and develop-

ment versus predictive application (Fornell & Bookstein, 1982;

Joreskog & Wold, 1982). This distinction and its implications

concern a basic choice of estimation method and underlying

model. For clarity, we can characterize this choice as one be-

tween a full-information (ML or GLS) estimation approach

(e.g., Bentler, 1983; Joreskog, 1978) in conjunction with the

common factor model (Harman, 1976) and a partial least

squares (PLS) estimation approach (e.g., Wold, 1982) in con-

junction with the principal-component model (Harman, 1976).

For theory testing and development, the ML or GLS ap-

proach has several relative strengths. Under the common factor

model, observed measures are assumed to have random error

variance and measure-specific variance components (referred

to together as uniqueness in the factor analytic literature, e.g.,

Harman, 1976) that are not of theoretical interest. This un-

wanted part of the observed measures is excluded from the

definition of the latent constructs and is modeled separately.

Consistent with this, the covariances among the latent con-

structs are adjusted to reflect the attenuation in the observed

covariances due to these unwanted variance components. Be-

cause of this assumption, the amount of variance explained in

the set of observed measures is not of primary concern. Re-

flecting this, full-information methods provide parameter esti-

mates that best explain the observed covariances. Two further

relative strengths of full-information approaches are that they

provide the most efficient parameter estimates (Joreskog &

Wold, 1982) and an overall test of model fit. Because of the un-

derlying assumption of random error and measure specificity,

however, there is inherent indeterminacy in the estimation of

factor scores (cf. Lawley & Maxwell, 1971; McDonald & Mu-

laik, 1979;Steiger, 1979). This is not a concern in theory testing,

whereas in predictive applications this will likely result in some

loss of predictive accuracy.

For application and prediction, a PLS approach has relative

strength. Under this approach, one can assume that all observed

measure variance is useful variance to be explained. That is,

under a principal-component model, no random error variance

or measure-specific variance (i.e., unique variance) is assumed.

Parameters are estimated so as to maximize the variance ex-

plained in either the set of observed measures (reflective mode)

or the set of latent variables (formative mode; Fomell &

Bookstein, 1982). Fit is evaluated on the basis of the percentage

of variance explained in the specified regressions. Because a

PLS approach estimates the latent variables as exact linear

combinations of the observed measures, it offers the advantage

of exact definition of component scores. This exact definition

in conjunction with explaining a large percentage of the vari-

ance in the observed measures is useful in accurately predicting

individuals' standings on the components.

Some shortcomings of the PLS approach also need to be

mentioned. Neither an assumption of nor an assessment of uni-

dimensional measurement (discussed in the next section) is

made under a PLS approach. Therefore, the theoretical mean-

ing imputed to the latent variables can be problematic. Further-

more, because it is a limited-information estimation method,

PLS parameter estimates are not as efficient as full-information

estimates (Fornell & Bookstein, 1982; Joreskog & Wold, 1982),

and jackknife or bootstrap procedures (cf. Efron & Gong, 1983)

are required to obtain estimates of the standard errors of the

parameter estimates (Dijkstra, 1983). And no overall test of

model fit is available. Finally, PLS estimates will be asymptoti-

cally correct only under the joint conditions of consistency

(sample size becomes large) and consistency at large (the num-

ber of indicators per latent variable becomes large; Joreskog &

Wold, 1982). In practice, the correlations between the latent

variables will tend to be underestimated, whereas the corre-

lations of the observed measures with their respective latent

variables will tend to be overestimated (Dijkstra, 1983).

These two approaches to structural equation modeling, then,

can be thought of as a complementary choice that depends on

the purpose of the research: ML or GLS for theory testing and

development and PLS for application and prediction. As Jore-

skog and Wold (1982) concluded, "ML is theory-oriented, and

emphasizes the transition from exploratory to confirmatory

analysis. PLS is primarily intended for causal-predictive analy-

sis in situations of high complexity but low theoretical informa-

tion" (p. 270). Drawing on this distinction, we consider, in the

remainder of this article, a confirmatory two-step approach to

theory testing and development using ML or GLS methods.

Estimation Methods

Since the inception of contemporary structural equation

methodology in the middle 1960s (Bock & Bargmann, 1966;
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Joreskog, 1966, 1967), maximum likelihood has been the pre-

dominant estimation method. Under the assumption of a multi-

variate normal distribution of the observed variables, maxi-

mum likelihood estimators have the desirable asymptotic, or

large-sample, properties of being unbiased, consistent, and

efficient (Kmenta, 1971). Moreover, significance testing of the

individual parameters is possible because estimates of the as-

ymptotic standard errors of the parameter estimates can be ob-

tained. Significance testing of overall model fit also is possible

because the fit function is asymptotically distributed as chi-

square, adjusted by a constant multiplier.

Although maximum likelihood parameter estimates in at

least moderately sized samples appear to be robust against a

moderate violation of multivariate normality (Browne, 1984;

Tanaka, 1984), the problem is that the asymptotic standard er-

rors and overall chi-square test statistic appear not to be. Re-

lated to this, using normal theory estimation methods when the

data have an underlying leptokurtic (peaked) distribution ap-

pears to lead to rejection of the null hypothesis for overall model

fit more often than would be expected. Conversely, when the

underlying distribution is platykurtic (flat), the opposite result

would be expected to occur (Browne, 1984). To address these

potential problems, recent developments in estimation proce-

dures, particularly by Bentler ( 1 983) and Browne ( 1 982, 1 984),

have focused on relaxing the assumption of multivariate nor-

mality.

In addition to providing more general estimation methods,

these developments have led to a more unified approach to esti-

mation. The traditional maximum likelihood fit function (Law-

ley, 1940), based on the likelihood ratio, is

F(0) = ln| 2(9)1 - ln|S| + tr[SZ(«r'] ~ U)

for p observed variables, with ap X p sample covariance matrix

S, and p X p predicted covariance matrix 2(fl), where 0 is the

vector of specified model parameters to be estimated. The spe-

cific maximum likelihood fit function in Equation 1 can be re-

placed by a more general fit function, which is implemented in

the EQS program (Bentler, 1985) and in the LISREL program,

beginning with Version 7 (Joreskog & Sorbom, 1 987):

) = [s - < (2)

where s is a p* X 1 vector (such that p' = p(p + 1)12) of the

nonduplicated elements of the full covariance matrix S (includ-

ing the diagonal elements), a(6) is the corresponding p* X 1 vec-

tor of predicted covariances from X(0), and U is a p* X p* weight

matrix. Fit functions that can be expressed in this quadratic

form define a family of estimation methods called generalized

least squares (GLS). As can be seen directly from Equation 2,

minimizing the fit function F(0) is the minimization of a

weighted function of the residuals, defined by s - a(6). The like-

lihood ratio fit function of Equation 1 and the quadratic fit

function of Equation 2 are minimized through iterative algo-

rithms (cf. Rentier, 1986b).

The specific GLS method of estimation is specified by the

value of U in Equation 2. Specifying U as I implies that mini-

mizing F is the minimization of the sum of squared residuals,

that is, ordinary, or "unweighted," least squares estimation. Al-

ternately, when it is updated as a function of the most recent

parameter estimates obtained at each iteration during the esti-

mation process, U can be chosen so that minimizing Equation

2 is asymptotically equivalent to minimizing the likelihood fit

function of Equation 1 (Browne, 1974; Lee & Jennrich, 1979).

Other choices of U result in estimation procedures that do

not assume multivariate normality. The most general proce-

dure, provided by Browne (1984), yields asymptotically distri-

bution-free (ADF) "best" generalized least squares estimates,

with corresponding statistical tests that are "asymptotically in-

sensitive to the distribution of the observations" (p. 62). These

estimators are provided by the EQS program and the LISREL 7

program. The EQS program refers to these ADF GLS estimators

as arbitrary distribution theory generalized least squares

(AGLS; Bentler, 1985), whereas the LISREL 7 program refers

to them as weighted least squares (WLS; Joreskog & Sorbom,

1987).

The value of U for ADF estimation is noteworthy in at least

two respects. First, the elements of U involve not only the sec-

ond-order product moments about the respective means (vari-

ances and covariances) of the observed variables but also the

fourth-order product moments about the respective means.

Therefore, as seen from Equation 2, although covariances are

still being fitted by the estimation process, as in traditional max-

imum likelihood estimation, U now becomes the asymptotic

covariance matrix of the sample variances and covariances.

Second, in ML or GLS estimation under multivariate normal

theory, Equation 2 simplifies to a more computationally tracta-

ble expression, such as in Equation 1. By contrast, in ADF esti-

mation, one must employ the full U matrix. For example, when

there are only 20 observed variables, U has 22,155 unique ele-

ments (Browne, 1984). Thus, the computational requirements

of ADF estimation can quickly surpass the capability of present

computers as the number of observed variables becomes mod-

erately large.

To address this problem of computational infeasibility when

the number of variables is moderately large, both EQS and LIS-

REL 7 use approximations of the full ADF method. Bentler and

Dijkstra (1985) developed what they called linearized estima-

tors, which involve a single iteration beginning from appropri-

ate initial estimates, such as those provided by normal theory

ML. This linearized (L) estimation procedure is referred to as

LAGLSin EQS. The approximation approach implemented in

LISREL 7 (Joreskog & Sorbom, 1987) uses an option for ignoring

the off-diagonal elements in U, providing what are called diago-

nally weighted least squares (DWLS) estimates.

Bentler (1985) also implemented in the EQS program an esti-

mation approach that assumes a somewhat more general under-

lying distribution than the multivariate normal assumed for

ML estimation: elliptical estimation. The multivariate normal

distribution assumes that each variable has zero skewness

(third-order moments) and zero kurtosis (fourth-order mo-

ments). The multivariate elliptical distribution is a generaliza-

tion of the multivariate normal in that the variables may share

a common, nonzero kurtosis parameter (Bentler, 1983; Beran,

1979; Browne, 1984). As with the multivariate normal, iso-den-

sity contours are ellipsoids, but they may reflect more platykur-

tic or leptokurtic distributions, depending on the magnitude

and direction of the kurtosis parameter. The elliptical distribu-

tion with regard to Equation 2 is a generalization of the multi-
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variate normal and, thus, provides more flexibility in the types

of data analyzed. Another advantage of this distribution is that
the fourth-order moments can be expressed as a function of the
second-order moments with only the addition of a single kurto-
sis parameter, greatly simplifying the structure of U.

Bentler (1983) and Mooijaart and Bentler (1985) have out-
lined an estimation procedure even more ambitious than any
of those presently implemented in EQS or LISREL 7. This proce-
dure, called asymptotically distribution-free reweighted least
squares (ARLS), generalizes on Browne's (1984) ADF method.
In an ADF method (or AGLS in EQS notation), U is denned as
a constant before the minimization of Equation 2 begins. By
contrast, in ARLS, U is updated at each iteration of the minimi-
zation algorithm. This updating is based on Bentler's (1983)
expression of higher order moment structures, specified as a
function of the current estimates of the model parameters,
thereby representing a generalization of presently estimated

second-order moment structures.
In addition to the relaxation of multivariate normality, recent

developments in estimation procedures have addressed at least

two other issues. One problem is that when the data are stan-
dardized, the covariances are not rescaled by known constants
but by data-dependent values (i.e., standard deviations) that
will randomly vary across samples. Because of this, when the

observed variable covariances are expressed as correlations, the
asymptotic standard errors and overall chi-square goodness-of-

fit tests are not correct without adjustments to the estimation
procedure (Bentler & Lee, 1983). A companion program to LIS-
REL 7, PRELIS (Joreskog & Sorbom, 1987), can provide such

adjustments. A second problem is the use of product-moment
correlations when the observed variables cannot be regarded as

continuous (cf. Babakus, Ferguson, & Joreskog, 1987). PRELIS
also can account for this potential shortcoming of current usage

by calculating the correct polychoric and polyserial coefficients
(Muthen, 1984) and then adjusting the estimation procedure
accordingly.

In summary, these new estimation methods represent impor-
tant theoretical advances. The degree, however, to which esti-
mation methods that do not assume multivariate normality will
supplant normal theory estimation methods in practice has yet

to be determined. Many data sets may be adequately character-

ized by the multivariate normal, much as the univariate normal
often adequately describes univariate distributions of data.
And, as Bentler (1983) noted, referring to the weight matrix

U, "an estimated optimal weight matrix should be adjusted to
reflect the strongest assumptions about the variables that may

be possible" (p. 504). Related to this, the limited number of
existing Monte Carlo investigations of normal theory ML esti-
mators applied to nonnormal data (Browne, 1984; Harlow,
1985; Tanaka, 1984) has provided support for the robustness of

ML estimation for the recovery of parameter estimates, though
their associated standard errors may be biased. Because assess-

ments of the multivariate normality assumption now can be
readily made by using the EQS and PRELIS programs, a re-
searcher can make an informed choice on estimation methods

in practice, weighing the trade-offs between the reasonableness
of an underlying normal theory assumption and the limitations
of arbitrary theory methods (e.g., constraints on model size and

the need for larger sample sizes, which we discuss later in the
next section).

Confirmatory Measurement Models

A confirmatory factor analysis model, or confirmatory mea-
surement model, specifies the posited relations of the observed
variables to the underlying constructs, with the constructs al-
lowed to intercorrelate freely. Using the LISREL program nota-
tion, this model can be given directly from Joreskog and Sor-
bom (1984, pp. 1.9-10) as

x = A£ + S, (3)

where x is a vector of q observed measures, $ is a vector of n
underlying factors such that n<q, A is a g X H matrix of pattern
coefficients or factor loadings relating the observed measures to
the underlying construct factors, and 5 is a vector of q variables

that represents random measurement error and measure speci-
ficity. It is assumed for this model that E(£ S) = 0. The variance-
covariance matrix for x, defined as 2, is

2 = (4)

where * is the nXn covariance matrix off and Qs is the diago-
nal q X q covariance matrix of i.

Need for Unidimensional Measurement

Achieving unidimensional measurement (cf. Anderson &
Gerbing, 1982; Hunter & Gerbing, 1982) is a crucial undertak-
ing in theory testing and development. A necessary condition
for assigning meaning to estimated constructs is that the mea-
sures that are posited as alternate indicators of each construct
must be acceptably unidimensional. That is, each set of alter-
nate indicators has only one underlying trait or construct in
common (Hattie, 1985; McDonald, 1981). Two criteria, each
representing necessary conditions, are used in assessing unidi-
mensionality: internal consistency and external consistency.

The internal consistency criterion can be presented in the fol-
lowing fundamental equation (Hart & Spearman, 1913, p. 58;
Spearman, 1914, p. 107):

Pac _ Pbc

Pad Pbd
(5)

where a, b, c, and rfare measures of the same construct, {. This
equality should hold to within sampling error (Spearman &
Holzinger, 1924), and at least four measures of a construct are
needed for an assessment. A related equation is the product rule
for internal consistency:

Pab — Pa(Pb(, (6)

where a and b are measures of some construct, |.
The external consistency criterion can be given by a redefini-

tion of Equation 3, where (a) a, b and c are alternate indicators
of a given construct and rf is redefined as an indicator of another
construct or (b) both c and d are redefined as alternate indica-
tors of another construct. A related equation is the product rule
for external consistency:
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Pad — (7) Specification

where a is any indicator of construct £ and dis any indicator of
another construct, £*. Note that when £ = f, Equation 7 re-
duces to Equation 6; that is, internal consistency represents a
special case of external consistency. Because it often occurs in

practice that there are less than four indicators of a construct,
external consistency then becomes the sole criterion for assess-

ing unidimensionality. The product rules for internal and exter-
nal consistency, which are used in confirmatory factor analysis,

can be used to generate a predicted covariance matrix for any
specified model and set of parameter estimates.

In building measurement models, multiple-indicator mea-
surement models (Anderson & Gerbing, 1982; Hunter & Gerb-
ing, 1982) are preferred because they allow the most unambigu-
ous assignment of meaning to the estimated constructs. The

reason for this is that with multiple-indicator measurement
models, each estimated construct is denned by at least two mea-

sures, and each measure is intended as an estimate of only one
construct. Unidimensional measures of this type have been re-
ferred to as congeneric measurements (Joreskog, 1971). By con-
trast, measurement models that contain correlated measure-

ment errors or that have indicators that load on more than one
estimated construct do not represent unidimensional construct

measurement (Gerbing & Anderson, 1984). As a result, assign-

ment of meaning to such estimated constructs can be problem-
atic (cf. Bagozzi, 1983; Fomell, 1983; Gerbing & Anderson,
1984).

Some dissent, however, exists about the application of the
confirmatory factor analysis model for assessing unidimension-

ality. Cattell (1973, 1978) has argued that individual measures

or items, like real-life behaviors, tend to be factorially complex.
"In other words, to show that a given matrix is rank one is not

to prove that the items are measuring a pure unitary trait factor
in common: it may be a mixture of unitary traits" (Cattell,
1973, p. 382). According to Cattell (1973), although these items

are unidimensional with respect to each other, they simply may

represent a "bloated specific" in the context of the true (source
trait) factor space. That is, the items represent a "psychological
concept of something that is behaviorally very narrow" (Cattell,

1973, p. 359).

We agree with Cattell (1973, 1978) that estimated first-order
factors may not correspond to the constructs of interest (cf.
Gerbing & Anderson, 1984). The measurement approach that

we have advocated is not, however, necessarily inconsistent with
Cattell's (1973, 1978) approach. The two approaches can be-
come compatible when the level of analysis shifts from the indi-
vidual items to a corresponding set of composites denned by

these items. Further analyses of these composites could then be
undertaken to isolate the constructs of interest, which would be
conceptualized as higher order factors (Gerbing & Anderson,
1984). One possibility is a second-order confirmatory factor

analysis as outlined by, for example, Joreskog (1971) or Weeks
(1980). Another possibility is to interpret the resulting compos-
ites within an existing "reference factor system," such as the
16 personality dimensions provided by Cattell (1973) for the

personality domain.

Setting the metric of the factors. For identification of the mea-
surement model, one must set the metric (variances) of the fac-
tors. A preferred way of doing this is to fix the diagonal of the
phi matrix at 1.0, giving all factors unit variances, rather than
to arbitrarily fix the pattern coefficient for one indicator of each
factor at 1.0 (Gerbing & Hunter, 1982). Setting the metric in
this way allows a researcher to test the significance of each pat-
tern coefficient, which is of interest, rather than to forgo this
and test whether the factor variances are significantly different
from zero, which typically is not of interest.

Single indicators. Although having multiple indicators for
each construct is strongly advocated, sometimes in practice
only a single indicator of some construct is available. And, as
most often is the case, this indicator seems unlikely to perfectly
estimate the construct (i.e., has no random measurement error
or measure-specificity component). The question then becomes
"At what values should the theta-delta and lambda parameters
be set?" To answer this, ideally, a researcher would like to have
an independent estimate for the error variance of the single indi-
cator, perhaps drawn from prior research, but often this is not
available.

In the absence of an independent estimate, the choice of val-
ues becomes arbitrary. In the past, a conservative value for t,,
such as. 1 sj, has been chosen, and its associated X has been set
at .95s, (e.g., Sorbom & Joreskog, 1982). Another conservative
alternative to consider is to set 9, for the single indicator at the
smallest value found for the other, estimated error variances
(9(). Although this value is still arbitrary, it has the advantage
of being based on information specific to the given research con-
text. That is, this indicator shares a respondent sample and sur-
vey instrument with the other indicators.

Sample size needed. Because full-information estimation
methods depend on large-sample properties, a natural concern
is the sample size needed to obtain meaningful parameter esti-
mates. In a recent Monte Carlo study, Anderson and Gerbing
(1984) and Gerbing and Anderson (1985) have investigated ML
estimation for a number of sample sizes and a variety of con-
firmatory factor models in which the normal theory assump-
tion was fully met. The results of this study were that although
the bias in parameter estimates is of no practical significance
for sample sizes as low as 50, for a given sample, the deviations
of the parameter estimates from their respective population val-
ues can be quite large. Whereas this does not present a problem
in statistical inference, because the standard errors computed
by the LISREL program are adjusted accordingly, a sample size
of 150 or more typically will be needed to obtain parameter
estimates that have standard errors small enough to be of practi-
cal use.

Related to this, two problems in the estimation of the mea-
surement model that are more likely to occur with small sample
sizes are nonconvergence and improper solutions. (We discuss
potential causes of these problems within the Respecification
subsection.) Solutions are nonconvergent when an estimation
method's computational algorithm, within a set number of iter-
ations, is unable to arrive at values that meet prescribed, termi-
nation criteria (cf. Joreskog, 1966, 1967). Solutions are im-
proper when the values for one or more parameter estimates
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are not feasible, such as negative variance estimates (cf. Dillon,

Kumar, & Mulani, 1987; Gerbing & Anderson, 1987; van Driel,

1978). Anderson and Gerbing (1984) found that a sample size of

150 will usually be sufficient to obtain a converged and proper

solution for models with three or more indicators per factor.

Measurement models in which factors are denned by only two

indicators per factor can be problematic, however, so larger

samples may be needed to obtain a converged and proper solu-

tion.

Unfortunately, a practical limitation of estimation methods

that require information from higher order moments (e.g.,

ADF) is that they correspondingly require larger sample sizes.

The issue is not simply that larger samples are needed to pro-

vide more stable estimates for consistent estimators. Perhaps

of greater concern, the statistical properties of full-information
estimators are asymptotic; that is, they have proven to be true

only for large samples. Thus, a critical task is to establish guide-

lines regarding minimum sample sizes for which the asymp-

totic properties of these more general, arbitrary distribution

theory estimators can be reasonably approximated.

Presently, such guidelines on minimum sample sizes have not

been determined. Initial studies by Tanaka (1984) and Harlow

(1985) suggest that a sample size of at least 400 or 500 is needed.

Furthermore, consider Browne's (1984) comments regarding

the choice of the best generalized least squares (BGLS) estima-

tors:

We note that the terra "best" is used in a very restricted sense with
respect to a specific asymptotic property which possibly may not
carry over to finite samples. It is possible that other estimators may
have other properties which render them superior to BGLS estima-
tors for practical applications of samples of moderate size. (p. 68)

Related to these comments, in a small, preliminary Monte

Carlo study, Browne (1984) found the BGLS estimates provided

by the asymptotic distribution-free procedure to have "unac-

ceptable bias" (p. 81) for some of the parameters with a sample

size of 500.

Assessment of Fit

After estimating a measurement model, given a converged

and proper solution, a researcher would assess how well the

specified model accounted for the data with one or more overall

goodness-of-fit indices. The LISREL program provides the prob-

ability value associated with the chi-square likelihood ratio test,

the goodness-of-fit index, and the root-mean-square residual

(cf. Joreskog & Sorbom, 1984, pp. 1.38-42). Anderson and

Gerbing (1984) gave estimates of the expected values of these

indices, and their 5th- or 95th-percentile values, for a variety of

confirmatory factor models and sample sizes. The chi-square

probability value and the normed and nonnormed fit indices

(Bentler & Bonett, 1980) are obtained from the EQS program

(Bentler, 1985, p. 94).'

Convergent validity can be assessed from the measurement

model by determining whether each indicator's estimated pat-

tern coefficient on its posited underlying construct factor is sig-

nificant (greater than twice its standard error). Discriminant

validity can be assessed for two estimated constructs by con-

straining the estimated correlation parameter (0S) between

them to 1.0 and then performing a chi-square difference test

on the values obtained for the constrained and unconstrained

models (Joreskog, 1971). "A significantly lower x2 value for the

model in which the trait correlations are not constrained to

unity would indicate that the traits are not perfectly correlated

and that discriminant validity is achieved" (Bagozzi & Phillips,

1982, p. 476). Although this is a necessary condition for demon-

strating discriminant validity, the practical significance of this

difference will depend on the research setting. This test should

be performed for one pair of factors at a time, rather than as a

simultaneous test of all pairs of interest.2 The reason for this is

that a nonsignificant value for one pair of factors can be obfus-

cated by being tested with several pairs that have significant val-

ues. A complementary assessment of discriminant validity is

to determine whether the confidence interval (±two standard

errors) around the correlation estimate between the two factors

includes 1.0.

Respecification

Because the emphasis of this article is on structural equation

modeling in practice, we recognize that most often some respec-

ification of the measurement model will be required. It must be

stressed, however, that respecification decisions should not be

based on statistical considerations alone but rather in conjunc-

tion with theory and content considerations. Consideration of

theory and content both greatly reduces the number of alternate

models to investigate (cf. Young, 1977) and reduces the possibil-

ity of taking advantage of sampling error to attain goodness

of fit.
Sometimes, the first respecification necessary is in response

to nonconvergence or an improper solution. Nonconvergence

can occur because of a fundamentally incongruent pattern of

sample covariances that is caused either by sampling error in

conjunction with a properly specified model or by a misspecifi-

cation. Relying on content, one can obtain convergence for the

model by respecifying one or more problematic indicators to

different constructs or by excluding them from further analysis.

Considering improper solutions, van Driel (1978) presented

three potential causes; sampling variations in conjunction with

true parameter values close to zero, a fundamentally misspeci-

fied model, and indefiniteness (underidentification) of the

model. Van Driel showed that it is possible to distinguish which

1 The normed fit index (Bentler & Bonett, 1980) can also be calcu-
lated by using the LISREL program. This is accomplished by specifying
each indicator as a separate factor and then fixing lambda as an identity
matrix, theta delta as a null matrix, and phi as a diagonal matrix with
freely estimated variances. Using the obtained chi-square value for this
overall null model (xl>)> in conjunction with the chi-square value (xi)
from the measurement model, one can calculate the normed fit index

value as (xl>-Xm)/X0.
2 When a number of chi-square difference tests are performed for as-

sessments of discriminant validity, the significance level for each test
should be adjusted to maintain the "true" overall significance level for
the family of tests (cf. Finn, 1974). This adjustment can be given as
a0 = 1 - (1 - 01)', where a0 is the overall significance level, typically set
at .05; a, is the significance level that should be used for each individual
hypothesis test of discriminant validity; and / is the number of tests
performed.
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of these causes is the likely one by examining the confidence

interval constructed around the negative estimate. When posi-

tive values fall within this confidence interval and the size of the

interval is comparable to that for proper estimates, the likely

cause of the improper estimate is sampling error. Building on

this work, Oerbing and Anderson (1987) recently found that

for improper estimates due to sampling error, respecifying the

model with the problematic parameter fixed at zero has no ap-

preciable effect on the parameter estimates of other factors or

on the overall goodness-of-fit indices. Alternately, this parame-

ter can be fixed at some arbitrarily small, positive number (e.g.,

.005) to preserve the confirmatory factor model (cf. Bentler,

1976).

Given a converged and proper solution but unacceptable

overall fit, there are four basic ways to respecify indicators that

have not "worked out as planned": Relate the indicator to a

different factor, delete the indicator from the model, relate the

indicator to multiple factors, or use correlated measurement

errors. The first two ways preserve the potential to have unidi-

mensional measurement and are preferred because of this,

whereas the last two ways do not, thereby obfuscating the mean-

ing of the estimated underlying constructs. The use of corre-

lated measurement errors can be justified only when they are

specified a priori. As an example, correlated measurement er-

rors may be expected in longitudinal research when the same

indicators are measured at multiple points in time. By contrast,

correlated measurement errors should not be used as respecifi-

cations because they take advantage of chance, at a cost of only

a single degree of freedom, with a consequent loss of interpret-

ability and theoretical meaningfulness (Bagozzi, 1983; Fornell,

1983). Gerbing and Anderson (1984) demonstrated how the un-

critical use of correlated measurement errors for respecifica-

tion, although improving goodness of fit, can mask a true un-

derlying structure.

In our experience, the patterning of the residuals has been

the most useful for locating the source of misspecification in

multiple-indicator measurement models. The LISREL program

provides normalized residuals (Joreskog & Sorbom, 1984, p.

1.42), whereas the EQS program (Bentler, 1985, pp. 92-93) pro-

vides standardized residuals. Although Bentler and Dijkstra

(1985) recently pointed out that the normalized residuals may

not be strictly interpretable as standard normal variates (i.e.,

normalized residuals greater than 1.96 in magnitude may not

be strictly interpretable as statistically significant), nonetheless,

the pattern of large normalized residuals (e.g., greater than 2 in

magnitude) is still informative for respecification. For example,

an indicator assigned to the wrong factor will likely have a pat-

tern of large negative normalized residuals with the other indi-

cators of the factor to which it was assigned (representing over-

fitting), and when another factor on which it should belong ex-

ists, an obverse pattern of large positive residuals will be

observed with the indicators of this factor (representing under-

fitting). As another example, indicators that are multidimen-

sional tend to have large normalized residuals (the result of ei-

ther underfitting or overfilling) wilh indicators of more lhan one

factor, which often represents the only large normalized resid-

ual for each of these other indicators.

Useful adjuncts to the pattern of residuals are similarity (or

proportionality) coefficients (Anderson & Gerbing, 1982;

Hunter, 1973) and multiple-groups analysis (cf. Anderson &

Gerbing, 1982; Nunnally, 1978), each of which can readily be

computed wilh Ihe ITAN program (Gerbing & Hunler, 1987). A

similarity coefficient, u,j, for any two indicators, x, and Xj, can

be defined for a set of q indicators as

4

2

i1'2
(8)

The value of this index ranges from -1.0 to +1.0, with values

greater in magnilude indicating greater internal and external

consistency for Ihe Iwo indicators. Thus, similarity coefficients

are useful because they efficiently summarize the internal and

external consistency of the indicators with one another. Alter-

nate indicators of the same underlying factor, therefore, should

have similarity coefficients that are typically .8 or greater.

Multiple-groups analysis is a confirmatory estimation

method thai is complementary to full-information estimation

of multiple-indicator measuremenl models. Wilh multiple-

groups analysis, each conslruct factor is defined as simply the

unit-weighted sum of its posited indicators. The factor loadings

are simply the correlation of each indicator with Ihe composite

(construct factor), and the factor correlations are oblained by

correlating Ihe composites. Communalities are computed

within each group of indicators by iteration. By using commu-

nalities, the resultanl indicator-factor and factor-factor corre-

lations are corrected for attenuation due to measuremenl error.

Because multiple-groups analysis estimates are computed from

only those covariances of the variables in Ihe equation on which

Ihe estimates are based, these estimates more clearly localize

misspecification, making il easier to detect (Anderson & Gerb-

ing, 1982). For example, if an indicator is specified as being

related to the wrong factor, then the multiple-groups analysis

shows this by producing a higher factor loading for this indica-

tor on the correct factor. Full-information melhods, by conlrasl,

draw on all indicator covariances to produce estimates that

minimize the fit function (Joreskog, 1978).

In summary, a researcher should use these sources of infor-

mation about respecification in an integrative manner, along

with content considerations, in making decisions about respeci-

fication. In practice, the measurement model may sometimes

be judged to provide acceptable fil even Ihough Ihe chi-square

value is still slatistically significant. This judgment should be

supported by Ihe values of the normed fit index and the other

fit indices, particularly Ihe rool-mean-square residual index in

conjunction wilh the number of large normalized or standard-

ized residuals (and the absolute values of Ihe largest ones).

One-Step Versus Two-Step Modeling Approaches

The primary contention of this article is thai much is to be

gained from separate estimation and respecification of the mea-

suremenl model prior to the simultaneous estimation of the

measurement and struclural submodels. In putting forth a spe-

cific two-step approach, we use the concepls of nested models,

pseudo chi-square tests, and sequential chi-square difference

tests (SCDTs) and draw on some recent work from quantitative
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psychology (Steiger, Shapiro, & Browne, 1985). These tests en-

able a separate assessment of the adequacy of the substantive

model of interest, apart from that of the measurement model.

We first present the structural model and discuss the concept of

interpretational confounding (Burt, 1973,1976).

A confirmatory structural model that specifies the posited

causal relations of the estimated constructs to one another can

be given directly from Joreskog and Sorbom (1984, p. 1.5). This

model can be expressed as

(9)

where i? is a vector of m endogenous constructs, {is a vector of

n exogenous constructs, B is an m X m matrix of coefficients

representing the effects of the endogenous constructs on one an-

other, r is an m X n matrix of coefficients representing the

effects of the exogenous constructs on the endogenous con-

structs, and f is a vector of m residuals (errors in equations and

random disturbance terms).

The definitional distinction between endogenous and exoge-

nous constructs is simply that endogenous constructs have their

causal antecedents specified within the model under consider-

ation, whereas the causes of exogenous constructs are outside

the model and not of present interest. Note that this distinction

was not germane in the specification of confirmatory measure-

ment models, given in Equation 3. Because of this, all observed

measures were denoted simply as x. In contrast, when struc-

tural models are specified, only observed measures of exoge-

nous constructs are denoted as x, whereas observed measures of

endogenous constructs are denoted as y. Separate measurement

submodels are specified for x and y (cf. Joreskog & Sorbom,

1984, pp. 1.5-6), which then are simultaneously estimated with

the structural submodel.

In the presence of misspecification, the usual situation in

practice, a one-step approach in which the measurement and

structural submodels are estimated simultaneously will suffer

from interpretation^ confounding (cf, Burt, 1973,1976). Inter-

pretational confounding "occurs as the assignment of empirical

meaning to an unobserved variable which is other than the

meaning assigned to it by an individual a priori to estimating

unknown parameters" (Burt, 1976, p. 4). Furthermore, this

empirically denned meaning may change considerably, depend-

ing on the specification of free and constrained parameters for

the structural submodel. Interpretational confounding is re-

flected by marked changes in the estimates of the pattern co-

efficients when alternate structural models are estimated.

The potential for interpretational confounding is minimized

by prior separate estimation of the measurement model be-

cause no constraints are placed on the structural parameters

that relate the estimated constructs to one another. Given ac-

ceptable unidimensional measurement, the pattern coefficients

from the measurement model should change only trivially, if at

all, when the measurement submodel and alternate structural

submodels are simultaneously estimated. With a one-step ap-

proach, the presence of interpretational confounding may not

be detected, resulting in fit being maximized at the expense of

meaningful interpretability of the constructs.

Recommended Two-Step Modeling Approach

For assessing the structural model under a two-step ap-

proach, we recommend estimating a series of five nested struc-

tural models. A model, Mj, is said to be nested within another

model, M! , when its set of freely estimated parameters is a sub-

set of those estimated in M,, and this can be denoted as M2 <

M! . That is, one or more parameters that are freely estimated

in Mi are constrained in M2. Typically, these parameters are

fixed at zero, although equality constraints may be imposed so

that two or more parameters are constrained to have the same

value.

A saturated structural submodel (cf. Bentler & Bonett, 1980),

Ms, can be defined as one in which all parameters (i.e., unidirec-

tional paths) relating the constructs to one another are esti-

mated. Note that this model is formally equivalent to a confir-

matory measurement model. Obversely, a null structural sub-

model, M,,, can be defined as one in which all parameters

relating the constructs to one another are fixed at zero (i.e.,

there are no posited relations of the constructs to one another).

A third structural submodel, Mt, represents the researcher's

theoretical or substantive model of interest. Finally, the struc-

tural submodels Mc and Mu represent, respectively, the "next

most likely" constrained and unconstrained alternatives from a

theoretical perspective to the substantive model of interest.

That is, in Mc, one or more parameters estimated in M, are

constrained, whereas in Mu, one or more parameters con-

strained in M, are estimated. Given their definitions, this set of

five structural submodels is nested in a sequence such that

Mn < Mc < Mt < Mu < Ms.

Under a two-step approach, a researcher could first assess

whether any structural model that would have acceptable good-

ness of fit existed. This would be accomplished with a pseudo

chi-square test (Bentler & Bonett, 1980), in which a pseudo chi-

square statistic is constructed from the chi-square value for M,

(the smallest value possible for any structural model) with the

degrees of freedom for Mn (the largest number of degrees of

freedom for any structural model). Note that M, and Mn need

not be estimated, because M, is equivalent to the final measure-

ment model, and only the associated degrees of freedom for Mn

are needed. If this pseudo chi-square statistic is significant, then

no structural model would give acceptable fit, because it would

have a chi-square value greater than or equal to the value for Mt

with fewer degrees of freedom than for Mn. Significance, then,

would suggest a fundamental misspecification of the measure-

ment model needs to be remedied, rather than a need to esti-

mate additional structural models. A researcher using a one-

step approach would not know this.

Sequential chi-square difference tests (SCDTs). Continuing

with the two-step approach, a researcher would next estimate

Mc, M, and Mu, obtaining a likelihood ratio chi-square statistic

value for each. These sequential chi-square tests (SCTs) provide

successive fit information, although these tests are not indepen-

dent. A preferred approach is to employ these test statistic val-

ues and their respective degrees of freedom in a set of SCDTs

(cf. Steiger et al., 1985), each of which is framed as a null hy-

pothesis of no significant difference between two nested struc-

tural models (denoted as M2 - MI = 0). The difference between

chi-square statistic values for nested models is itself asymptoti-
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cally distributed as chi-square, with degrees of freedom equal

to the difference in degrees of freedom for the two models. In a

recent development, Steiger et al. (1985) proved analytically

that these sequential chi-square difference tests are asymptoti-

cally independent.3'4

What this means is that to maintain asymptotically indepen-

dent tests, a researcher would first use the SCDT comparison of

M0 — Ms to assess the reasonableness of the structural con-

straints imposed by Mu on the estimated construct covariances.

If the null hypothesis associated with this test was upheld, the

SCDT comparison of M, — Mu would be made. If the null hy-

pothesis was upheld for this test, a researcher would then pro-

ceed to Me - M,. Each test assesses whether there is a significant

difference in explanation of the estimated construct covariances

given by the two structural models. For each SCDT in which

the associated null hypothesis was upheld, the more constrained

model of the two would be tentatively accepted.

In practice, though, when this sequence of tests indicates that

Mt or Me should be accepted, a researcher would also like to

know whether or not Mt or MC also provides acceptable expla-

nation of the construct covariances. That is, a researcher would

like to know if the null hypothesis associated with the SCDT

comparison of M, - M, or of Mc - MS also is upheld. Note that

finding that Mt — Mu and Mu — Ms are each not significant

does not necessarily mean that M, - Ms will not be significant.

Conversely, finding that Mt - Mu is significant, when Mu - M,

is not significant, does not necessarily mean that M, - M, also

will be significant. A similar situation holds for Mc - Mt in rela-

tion to Mc - Ms. Therefore, to provide a greater understanding

of the acceptability of a given structural model, a researcher

would perform these additional SCDT comparisons in con-

junction with the earlier sequence of tests.

Fortunately, the SCDT comparisons of Mt - M, and M0 -

Ms are each asymptotically independent of the chi-square test

of Ms, which represents the baseline model. Because the SCDT

value and associated degrees of freedom for Mt — M, are simply

the respective sums of those for M, - Mu and Mu - Ms> note

that it will not, however, be independent from these tests. In

a similar way, the SCDT comparison of M0 - MS will not be

independent from the earlier sequence of three SCDT compari-

sons (or from M, - M,). Nevertheless, the additional SCDT

comparisons of M, - M, and Mc - M, can be usefully inter-

spersed with the earlier sequence of SCDT comparisons to pro-

vide a decision-tree framework that enables a better under-

standing of which, if any, of the three alternative theoretical

models should be accepted. We present one decision-tree

framework for this set of SCDT comparisons in Figure 1.

A decision-tree framework. As can be seen from Figure 1,

under this decision-tree framework, a researcher would first per-

form the SCDT of M, - M,. This SCDT provides an asymptoti-

cally independent assessment of the theoretical model's expla-

nation of the relations of the estimated constructs to one an-

other. In other words, one can make an asymptotically

independent test of nomological validity. Note that because

M, - MS is asymptotically independent of Ms, a researcher can

build a measurement model that has the best fit from a content

and statistical standpoint, where respecification may have been

employed to accomplish this, and still provide a statistical as-

sessment of the adequacy of the theoretical model of interest.

Before continuing with this decision tree, we should mention

another comparative strength of the two-step approach. Not

only does the SCDT comparison of M, - M5 provide an assess-

ment of fit for the substantive model of interest to the estimated

construct covariances, but it also requires the researcher to con-

sider the strength of explanation of this theoretical model over

that of a confirmatory measurement model. Comparing the de-

grees of freedom associated with this SCDT with the total num-

ber available, [(m + n)(m + n - l)]/2, indicates this inferential

strength. That is, the ability to make any causal inferences

about construct relations from correlational data depends di-

rectly on the available degrees of freedom. Thus, for example,

a researcher who specifies a substantive model in which each

construct is related by direct causal paths to all others would

realize from this test the inability to make any causal inferences.

This is because no degrees of freedom would exist for the

SCDT; the theoretical "causal" model is indistinguishable from

a confirmatory measurement model, and any causal interpreta-

tion should be carefully avoided. To the extent, however, that a

"considerable" proportion of possible direct causal paths are

specified as zero and there is acceptable fit, one can advance

qualified causal interpretations.

The SCDT comparison of Mc — Mt provides further under-

standing of the explanatory ability afforded by the theoretical

model of interest and, irrespective of the outcome of the

Mt - Ms comparison, would be considered next. Bagozzi (1984)

recently noted the need to consider rival hypotheses in theory

construction and stressed that whenever possible, these rival ex-

planations should be tested within the same study. Apart from

this but again stressing the need to assess alternative models,

MacCallum (1986) concluded from his research on specifica-

tion searches that "investigators should not interpret a nonsig-

nificant chi-square as a signal to stop a specification search"

(p. 118). SCDTs are particularly well-suited for accomplishing

these comparisons between alternative theoretical models.

Consider first the upper branch of the decision tree in Figure

1, that is, the null hypothesis that Mt - M, = 0 is not rejected.

Given this, when both the Mc — M, and the Mc — Ms compari-

sons also are not significant, Mc would be accepted because it

is the most parsimonious structural model of the three hypothe-

sized, theoretical alternatives and because it provides adequate

explanation of the estimated construct covariances. When ei-

3 Steiger et al. (1985) developed these analytic results within the con-
text of exploratory maximum likelihood factor analysis, in which the
question of interest is the number of factors that best represents a given
covariance matrix. However, their derivations were developed for a gen-

eral discrepancy function, of which the fit function used in confirma-
tory analyses of covariance structures (cf. Browne, 1984; Joreskog,
1978) is a special case. Their results even extend to situations in which
the null hypothesis need not be true. In such situations, the SCDTs will
still be asymptotically independent but asymptotically distributed as
noncentral chi-square variates.

4 A recent development in the EQS program (Bentler, 1986a) is the
provision of Wald tests and Lagrange multiplier tests (cf. Buse, 1982),
each of which is asymptotically equivalent to chi-square difference tests.
This allows a researcher, within a single computer run, to obtain overall
goodness-of-fit information that is asymptotically equivalent to what
would be obtained from separate SCDT comparisons of Mc and M0

with the specified model, Mt.
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M, - Ms

Mr • M,

MC • Ms

I sign

Mt - Mu

Respecify Mu as alternate model, Mu';
then M, - Mu.

 a

-Accept Mu

' Relax constraint in Mu that is

"next-most-likely." model Mu, ;

then Mu2 - MS "

Figure 1. A decision-tree framework for the set of sequential chi-square difference tests (SCDTs). Mt =
theoretical model of interest; M, = measurement (or "saturated") model; Mc and Mu = next most likely
constrained and unconstrained structural models, respectively; ns and sign indicate that the null hypothesis
for each SCDT is not or is rejected, respectively, at the specified probability level {e.g., .05).
"The modeling approach shifts from being confirmatory to being increasingly exploratory.

ther Mc - Mt or Mc - Ms is significant, the M, - Mu comparison

would be assessed next. If this SCDT is not significant, it indi-

cates that relaxing the next most likely constraint or constraints

from a theoretical perspective in M, does not significantly add

to its explanation of the construct covariances, and with parsi-

mony preferred when given no difference in explanation, Mt

would be accepted. Obversely, a significant result would indi-

cate that the additional estimated parameter or parameters in-

crementally contribute to the explanation given by M, and

would lead to the acceptance of Mu. Note that because of the

additive property of chi-square values and their associated de-

grees of freedom, one need not perform the SCDT of Mu - MS,

which must be nonsignificant given the earlier pattern of SCDT

results.

Consider now the lower branch of the decision tree, that is,

the null hypothesis that Mt — M5 = 0 is rejected. As with the

upper branch, when both the Mc - M, and Mc - Ms compari-

sons are not significant, a researcher would accept Mc. The ex-

planation in this situation, however, would be that one or more

parameters that were being estimated in Mt were superfluous in

that they were not significantly contributing to the explanation

of the construct covariances but were "costing" their associated

degrees of freedom. Constraining these irrelevant parameters in

Mc gains their associated degrees of freedom, with no apprecia-

ble loss of fit. As a result, although Mt - MS was significant,

Mc — MS, which has essentially the same SCDT value, is not

because of these additional degrees of freedom.

When either the Mc - Mt or Me - Ms comparison is signifi-

cant, the SCDT of M, - Mu is considered next. Given that

Mt — Ms has already been found significant, a nonsignificant

value for MI — Mu would indicate the need to respecify Mn as

some alternative structural model, Mu-, such that M, < Mn.. Put

differently, in this situation, a researcher needs to reconsider the

set of parameters from Mt that were freed in Mu and pursue an

alternative theoretical tack in specifying Mu:. Then, a researcher

would perform the SCDT of M, — Mu>, and the modeling ap-

proach would shift from being confirmatory to being increas-

ingly exploratory. In practice, a researcher might at this point

also constrain to zero, or "trim" any parameters from Mt that

have nonsignificant estimates (Mr). A respecification search for

MU' would continue until both a significant value of Mt — MU'

and a nonsignificant value of MU' — Ms are obtained or until

there are no further constrained parameters that would be theo-

retically meaningful to relax.

Before moving on to consider the Mu — Ms branch, we should

note that even though Mt — Ms is significant and M, — Mn is

not, it is possible to obtain a SCDT value for Mu - Ms that is

not significant. Although this may not occur often in practice,

a researcher would still not accept M0 in this situation. The ra-

tionale underlying this is that, given that M, - Ms is significant,

there must be one or more constrained parameters in M, that,

when allowed to be unconstrained (as Mu"), would provide a

significant increment in the explanation of the estimated con-

struct covariances over M,; that is, the SCDT of M, - Mtf would

be significant. Given this and that Mu - M, was not significant,

Mu. - M, must also not be significant. Therefore, Mu. would

provide a significant increment in explanation over M, and

would provide adequate explanation of the estimated construct

covariances.

The final SCDT comparison of Mu - Ms is performed when

M, - Mn is significant (as is M, - Ms). When this SCDT value is

significant, a researcher would accept Mu. The next most likely
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unconstrained theoretical alternative, though less parsimonious

than Mt, is required for acceptable explanation of the estimated

construct covariances. Finally, when Mu - Ms is significant, a

researcher would relax one or more parameters in Mu that is

"next most likely" from a theoretical perspective, yielding a

model M^, such that Mu < MU2. Then, a researcher would per-

form the SCOT of MU2 - Ms, and as with M, - M0., the model-

ing approach would shift from being confirmatory to being in-

creasingly exploratory. A respecification search for M02 would

continue until a nonsignificant value of MUJ — Ms is obtained

or until no further constrained parameters are theoretically

meaningful to relax. Note that the critical distinction between

MU2 and Mrf is that with MU2, the respecification search contin-

ues along the same theoretical direction, whereas with Mu., the

respecification search calls for a change in theoretical tack. This

is reflected by the fact that Mu < MU2, whereas Mu will not be

nested within M^.

We should mention two further advantages of this two-step

approach over a one-step approach. Paths that are specified as

absent and are then supported by an SCOT also provide theo-

retical information, and this should not be overlooked. A two-

step approach focuses attention on the trade-off between good-

ness of fit and strength of causal inference that is implicit in a

one-step approach. Adding more paths will likely improve

goodness of fit, but it correspondingly compromises the ability

to make meaningful, causal inferences about the relations of the

constructs to one another. As a final comparative advantage,

separate assessments of the measurement model and the struc-

tural model preclude having good fit of one model compensate

for (and potentially mask) poor fit of the other, which can occur

with a one-step approach.

Additional Considerations in Structural

Model Interpretation

Practical versus statistical significance. To this point, we have

considered significance only from the perspective of formal, sta-

tistical tests. As has been noted by Bentler and Bonett (1980)

and others (e.g., Joreskog, 1974), however, the value of the chi-

square likelihood ratio statistic is directly dependent on sample

size. Because of this, with large sample sizes, significant values

can be obtained even though there are only trivial discrepancies

between a model and the data. Similarly, with large sample

sizes, a significant value for an SCOT may be obtained even

when there is only a trivial difference between two nested struc-

tural models' explanations of the estimated construct covari-

ances. Therefore, an indication of goodness of fit from a practi-

cal standpoint, such as that provided by the normed fit index

(A) of Bentler and Bonett, is useful in conjunction with formal

statistical tests. The normed fit index, which ranges from 0 to

1, can be thought of as the percentage of observed-measure co-

variation explained by a given measurement or structural

model (compared with an overall, null model [M#] that solely

accounts for the observed-measure variances).

Under the two-step approach, a normed fit index value would

be calculated in conjunction with each SCOT. As an example,

AK would provide supplementary information on the practical

decrement in fit of the theoretical model of interest from that

of the measurement model, expressed as a percentage difference

in covariation explained. Put differently, this value would indi-

cate the practical loss of explanatory ability that resulted from

constraining to zero the paths that were hypothesized as such

in the substantive, structural model.

Depending on the research setting, a researcher may place

greater emphasis on the normed fit index values than on the

SCOT values in making decisions about which of the alternative

structural models to accept. For example, a researcher may de-

cide to accept M, over Mu on the basis of a practically insignifi-

cant Atll, even though the SCOT of Mt - Mn indicates a statisti-

cally significant difference between the two models. That is,

from a practical standpoint, the more parsimonious M, pro-

vides adequate explanation.

Finally, A,0 would indicate the overall percentage of ob-

served-measure covariation explained by the structural and

measurement submodels.

Considerations in drawing causal inferences. Causal infer-

ences made from structural equation models must be consistent

with established principles of scientific inference (cf. Cliff,

1983). First, models are never confirmed by data; rather, they

gain support by failing to be disconfirmed. Although a given

model has acceptable goodness of fit, other models that would

have equal fit may exist, particularly when relatively few paths

relating the constructs to one another have been specified as

absent. Second, temporal order is not an infallible guide to

causal relations. An example that Cliff noted is that although

a father's occupation preceded his child's performance on an

intelligence test and the two are correlated, this does not mean

that the father's occupation "caused" the child's intelligence.

Third, in what is known as the nominalistic fallacy, naming

something does not necessarily mean that one understands it.

An inherent gap in meaning exists between an observed vari-

able (indicator) and its corresponding, underlying construct be-

cause of (a) invalidity—the observed variable measures, at least

partly, something other than what was intended—and (b) unre-

liability—the values of the observed variable are partly due to

random measurement error. Finally, although use of the two-

step approach preserves the ability to make some inferences,

respecification typically limits the ability to infer causal re-

lations.

Ideally, a researcher would want to split a sample, using one

half to develop a model and the other half to validate the solu-

tion obtained from the first half. (For a discussion of cross-vali-

dation for covariance structures, see Cudeck & Browne's, 1983,

article.) However, because large samples are needed to attain

the desirable asymptotic properties of full-information ML or

GLS estimators, in practice the ability to split a sample most

often will be precluded. Application of these principles will

have the effect that, in most research situations, only qualified

statements of causal inference can be justified.

Conclusion

We have attempted to provide some guidance for substantive

researchers regarding the construction and evaluation of struc-

tural equation models in practice. Gaining a working under-

standing of these relatively new, confirmatory methods can be

facilitated by the suggested guidelines. The primary contribu-

tion of this article is to present a comprehensive, two-step mod-
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eling approach that draws on past research and experience, as

well as some recent analytic developments. We have also offered

guidance regarding the specification, assessment, and respeci-

fication of confirmatory measurement models.

As we have advocated, there is much to be gained from a

two-step approach, compared with a one-step approach, to the

model-building process. A two-step approach has a number of

comparative strengths that allow meaningful inferences to be

made. First, it allows tests of the significance for all pattern co-

efficients. Second, the two-step approach allows an assessment

of whether any structural model would give acceptable fit.

Third, one can make an asymptotically independent test of the

substantive or theoretical model of interest. Related to this,

because a measurement model serves as the baseline model in

SCDTs, the significance of the fit for it is asymptotically inde-

pendent from the SCDTs of interest. As a result, respecification

can be made to achieve acceptable unidimensional construct

measurement. Finally, the two-step approach provides a partic-

ularly useful framework for formal comparisons of the substan-

tive model of interest with next most likely theoretical alterna-

tives.

Structural equation modeling, properly employed, offers

great potential for theory development and construct validation

in psychology and the social sciences. If substantive researchers

employ the two-step approach recommended in this article and

remain cognizant of the basic principles of scientific inference

that we have reviewed, the potential of these confirmatory

methods can be better realized in practice.
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