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1. Introduction

In our opinion, the best start for regression applications in R is either Faraway’s (2005) book
Linear models with R, or Fox’s (2002) R and S-Plus companion to applied regression. In this
document, we present an overview of regression diagnostics using material from chapter four
of Faraday’s book mainly. When running through the examples, the power of the R environ-
ment will become unmistakably clear, especially in the versatility of its graphical options.

First, install the packages faraway (Faraway), car (Fox), and lmtest (R) from a Compre-
hensive R Archive Network (CRAN) mirror by choosing Packages → Install packages at the
upper tool bar of RGui (R’s Graphical user interface). Next, load the faraway package, and
from that package data frame savings.

> library(faraway) # loading package 'faraway'
> data(savings) # documentation on data set 'sexab'

The command attach(savings) is not strictly necessary in the sequel, nor recommended
here: for some commands, country labels would vanish in the output.

> ? savings # documentation of "Savings rates"

This data frame contains the savings rates in n = 50 countries (source: Belsley, Kuh &
Welsch, 1980). The data are averaged over the period 1960–1970. The data frame (50 x 5)

contains the following objects or variables:

sr savings rate – personal saving divided by disposable income

pop15 percent population under age of 15

pop75 percent population over age of 75

dpi per-capita disposable income in dollars

ddpi percent growth rate of dpi
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> savings # list complete data frame 'savings'

The linear regression model M1 for response variable savings rate sr is specified and estimated
as follows:

> M1 <- lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings)

> (M1 sum <- summary(M1)) # summary of estimated model

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)

Residuals:

Min 1Q Median 3Q Max

-8.242 -2.686 -0.249 2.428 9.751

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566087 7.354516 3.88 0.00033 ***

pop15 -0.461193 0.144642 -3.19 0.00260 **

pop75 -1.691498 1.083599 -1.56 0.12553

dpi -0.000337 0.000931 -0.36 0.71917

ddpi 0.409695 0.196197 2.09 0.04247 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-squared: 0.338, Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

. Check whether the details of this summary are well understood.

> options(show.signif.stars=F) # suppress stars of significance

> options(digits=4) # set numbers of significant digits

The fitted values Ŷi and the residuals ei can be obtained as follows:

> fitted(M1) # predicted Y: Ŷi
> residuals(M1) # residuals ei
> which.max(abs(residuals(M1))) # largest absolute residual |ei|?

Zambia

46

. Diagnostic purpose of residuals: locating large errors in prediction.
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2. Checking model assumptions

We need to inspect the validity of the main assumptions of the linear regression model. This
refers, first of all, to the (conditional) distribution of the model’s errors terms εi: homogeneous
variance, normality, and independence. Analysis of observed residuals ei may help to evaluate
the plausibility of these assumptions. Checking for unusual and influential observations is
another part of regression diagnostics. In addition, the validity of the structural model itself,
i.e., its linearity E(Y ) = Xβ and the selection of explanatory variables, should be examined.

2.1 Constant variance

• Residual plot: Ŷi against ei

> par(las=1) # horizontal style of axis labels

> plot(fitted(M1), residuals(M1), xlab="Fitted", ylab="Residuals")

> abline(h=0, col="red") # draws a horizontal red line at y = 0

There are a number of specific plot diagnostics for an lm() object, which allow for standard
plotting jobs –– all available in the built-in stats package.

> ? plot.lm

> plot(M1, which=1) # Ŷi against ei
> plot(M1, ask=TRUE) # all six standard lm() plots available

• Absolute residual plot: Ŷi against |ei|

> plot(fitted(M1), abs(residuals(M1)), xlab="Fitted", lab="|Residuals|")

This plot is designed to check for constant variance only.

• Absolute residual plot: Ŷi against sqrt(standardized |ei|)

> plot(M1, which=3) # R’s standardized residuals scale-location plot

• Quick and dirty test

Faraway (2005) mentions the following F -test as a quick way to check non-constant variance
by a regression of |ei| on Ŷi, where |ei| is the response and Ŷi the explanatory variable.

> summary(lm(abs(residuals(M1)) ˜ fitted(M1)))
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Call:

lm(formula = abs(residuals(M1)) ~ fitted(M1))

Residuals:

Min 1Q Median 3Q Max

-2.8395 -1.6078 -0.3493 0.6625 6.7036

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8398 1.1865 4.079 0.000170

fitted(M1) -0.2035 0.1185 -1.717 0.092501

Residual standard error: 2.163 on 48 degrees of freedom

Multiple R-Squared: 0.05784, Adjusted R-squared: 0.03821

F-statistic: 2.947 on 1 and 48 DF, p-value: 0.0925

It turns out that the absolute residuals |ei| are not predicted very well by Ŷi, which is roughly
satisfying. Hence, we conclude that there does not seem to be a problem with the constant
variance assumption.

• Interpretation of residual plots

For a proper evaluation of residual plots it may be helpful to generate some artificial plots
for situations where true relationships are known.

> par(mfrow=c(3,3)) # setting a plot device, here a (3 x 3) matrix

# with three plots in each of the three rows;

# first, an empty plot window pops up

> for(i in 1:9) plot(1:50,rnorm(50)) # constant variance

> for(i in 1:9) plot(1:50,(1:50)*rnorm(50)) # strong heterogeneity

> for(i in 1:9) plot(1:50,sqrt((1:50))*rnorm(50)) # mild heterogeneity

> for(i in 1:9) plot(1:50,cos((1:50)*pi/25)+rnorm(50)) # non-linearity

2.2 Normality

• Q-Q plots

Observed ordered residuals ei (the sample quantiles at the y-axis) are plotted against expected
normal quantiles Φ(−1)[i/(n+1)] at the x-axis, where Φ(x) is the standard normal distribution
function, i.e., Φ(x) = Pr(X < x). Recall that ei ∼ N (0, σ2).
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For the savings data we try the following:

> par(mfrow=c(1,1)) # reset plotting device

> qqnorm(residuals(M1), ylab="Residuals") # Q-Q plot

> qqline(residuals(M1)) # line through Q1 and Q3

• Interpretation of Q-Q plots

To get an idea of the variation to be expected in a Q-Q plot, inspect the plots generated for
a number of probability distributions. In the examples below, we use the standard normal,
the lognormal, Student’s t with one degree of freedom, and the uniform U(0, 1) distribution,
respectively. Nine independent pseudo-random samples of size 50 are generated from each
distribution. For each sample, a Q-Q plot with a quartile-line is produced.

> par(mfrow=c(3,3))

> for(i in 1:9) x = rnorm(50); qqnorm(x); qqline(x)

# i.e., standard normal distribution (symmetric)

> for(i in 1:9) x = rlnorm(50); qqnorm(x); qqline(x)

# lognormal distribution (long right tail, skew to right)

> for(i in 1:9) x = rt(50,1); qqnorm(x); qqline(x)

# Student t-distribution with one df (heavy tails, platykurtic)

> for(i in 1:9) x = runif(50); qqnorm(x); qqline(x)

# uniform (0,1) distribution (short tails, leptokurtic)

If the errors εi are not normal, the least squares estimates may not be optimal. They will still
be best linear unbiased estimates, but other robust estimators may be more effective. Tests
and confidence intervals may not be exact. Long-tailed distributions in particular, cause large
inaccuracies. Mild non-normality may be safely ignored, according to Faraway (2005, p. 59),
but we may need more specificity here.

• Histograms and box plots

Histograms and box plots graphs are also suitable for checking normality, along with descrip-
tive statistics like skewness and kurtosis, for example.

> par(mfrow=c(1,1))

> hist(residuals(M1))

> boxplot(residuals(M1))
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• Shapiro-Wilks normality test

> shapiro.test(residuals(M1))

Shapiro-Wilk normality test

data: residuals(M1)

W = 0.987, p-value = 0.8524

The null hypothesis is that the residuals have a normal distribution. The p-value of the test
statistic is large in this example. It thus follows that the null hypothesis is not rejected.
Faraway (2005) only recommends this test in conjunction with a Q-Q plot. For large samples
the test may be too sensitive, and for small samples its power may be too small – the usual
dilemma.

2.3 Independent errors

The data set airquality from the datasets package serves as a more appropriate illustration
here than the savings data. The data are daily air quality measurements in New York, from
May to September 1973 (source: Chambers, Cleveland, Kleiner & Tukey, 1983). We have a
data frame with n = 153 observations on 6 numerical variables.

Ozone Ozone (ppb – in parts per billion particles)

Solar.R Solar R (Solar radiation in Langleys)

Wind Wind (mph)

Temp Temperature (degrees F)

Month Month (1–12)

Day Day of month (1–31)

> airquality # notice missing values (NAs)

> attach(airquality)

> names(airquality)

• Scatter plots

Take a look at scatter plots first. The function pairs() produces a matrix of scatter plots
for all pairs of variables in a data frame.

> pairs(airquality, panel=panel.smooth) # matrix of scatter plots
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Inspection of correlations for linear relationships (listwise deletion of missing cases), given
these scatter plots, can be illustrative too.

> round(cor(airquality, use="complete.obs"), digits=2)

Next a linear regression model M2 for Ozone is fitted to the data, where Month and Day are
not used as linear predictors.

> M2 <- lm(Ozone ˜ Solar.R + Wind + Temp, data=airquality,

+ na.action=na.exclude)

> summary(M2) # summary of the estimated linear model

Call:

lm(formula = Ozone ~ Solar.R + Wind + Temp, data = airquality,

na.action = na.exclude)

Residuals:

Min 1Q Median 3Q Max

-40.485 -14.219 -3.551 10.097 95.619

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.34208 23.05472 -2.791 0.00623

Solar.R 0.05982 0.02319 2.580 0.01124

Wind -3.33359 0.65441 -5.094 1.52e-06

Temp 1.65209 0.25353 6.516 2.42e-09

Residual standard error: 21.18 on 107 degrees of freedom

Multiple R-Squared: 0.6059, Adjusted R-squared: 0.5948

F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

> table(complete.cases(airquality)) # number of complete cases

We notice that the data frame has missing values. There are 111 complete cases only. The
default with respect to missing values for regression analysis in R is to omit any case that
contains a missing value. The option na.action=na.exclude does not use cases with missing
values in the computation but keeps track of which cases are missing in the residual, fitted
values and other quantities.

Residual diagnostics show some non-constant variance and non-linearity –– see the previous
pairs() plots. Therefore, a logarithmic transformation of the response variable Ozone is
made, resulting in model M2 log.
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• Transformation of the response variable

> M2 log <- lm(log(Ozone) ˜ Solar.R + Wind + Temp, airquality,

+ na.action=na.exclude)

> summary(M2 log) # summary of the estimated linear model

Call:

lm(formula = log(Ozone) ~ Solar.R + Wind + Temp, data = airquality,

na.action = na.exclude)

Residuals:

Min 1Q Median 3Q Max

-2.061929 -0.299696 -0.002312 0.307559 1.235783

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2621323 0.5535669 -0.474 0.636798

Solar.R 0.0025152 0.0005567 4.518 1.62e-05

Wind -0.0615625 0.0157130 -3.918 0.000158

Temp 0.0491711 0.0060875 8.077 1.07e-12

Residual standard error: 0.5086 on 107 degrees of freedom

Multiple R-Squared: 0.6644, Adjusted R-squared: 0.655

F-statistic: 70.62 on 3 and 107 DF, p-value: < 2.2e-16

. Notice the improvement of fit of model M2 log over that of model M2, where Ozone was
untransformed.

We now check for correlated error terms. Recall that there is a time component in the
airquality data.

• Index plot of residuals ei, i.e., a plot of ei against time

> par(las=1, mfrow=c(1,1))

> plot(residuals(M2 log), ylab="Residuals")

> abline(h=0)

If there was serial correlation, we would see either long runs of residuals above or below
the line for positive correlation, or greater than normal fluctuations for negative correlation.
Unless the effects are strong, they may be difficult to detect. Therefore, it is often better to
plot successive residuals.
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• Plot of successive residuals ei [1,152] against ei+1 [2,154]

> plot(residuals(M2 log)[-153], residuals(M2 log)[-1],

+ xlab=expression(hat(epsilon)[i]), ylab=expression(hat(epsilon)[i+1]))

No obvious problem with correlated errors is shown. There is an outlier though, which we
may try to identify. Is there really only one outlier?

> identify(residuals(M2 log)[-153], residuals(M2 log)[-1], n=4)

• Regression of ei+1 [response] on ei [explanatory variable]

> summary(lm(residuals(M2 log)[-1] ˜ -1 + residuals(M2 log)[-153]))

Call:

lm(formula = residuals(M2_log)[-1] ~ -1 + residuals(M2_log)[-153])

Residuals:

Min 1Q Median 3Q Max

-2.07274 -0.28953 0.02583 0.32256 1.32594

Coefficients:

Estimate Std. Error t value Pr(>|t|)

residuals(M2_log)[-153] 0.1104 0.1053 1.048 0.297

Residual standard error: 0.5078 on 91 degrees of freedom

Multiple R-Squared: 0.01193, Adjusted R-squared: 0.001073

F-statistic: 1.099 on 1 and 91 DF, p-value: 0.2973

This regression model of successive residuals omits the intercept term, -1, because the mean
of the residuals is zero, by definition.

Clearly, there is no substantive correlation (take the square root of R-Squared, which gives
0.10922), also to be shown as follows:

> cor(residuals(M2 log)[-1], residuals(M2 log)[-153], use="complete.obs")

[1] 0.1092547



Regression Diagnostics with R 10

• Durbin-Watson test

The function for this test statistic is implemented in the lmtest package.

> library(lmtest)

Loading required package: zoo # a message that can be ignored

# zoo means Z’s Ordered Observations

> dwtest(Ozone ˜ Solar.R + Wind + Temp, data=na.omit(airquality))

Durbin-Watson test

data: Ozone ~ Solar.R + Wind + Temp

DW = 1.9355, p-value = 0.3347

alternative hypothesis: true autocorrelation is greater than 0

The p value indicates that there is no evidence of correlated errors, but the results should be
viewed with skepticism because of the omission of the missing values, according to Faraway
(2005). Interestingly, Faraway does not show the test results for log(Ozone), which are
slightly worse (DW = 1.8068, p-value = 0.1334).

In general, if the errors appear to be correlated, we can use generalized least squares estima-
tion, implemented by the function gls().

• Runs test

A runs test is an alternative to the Durbin-Watson test. The function runs.test() in the
package tseries computes the runs test statistic for randomness of a dichotomous (binary)
data series x. Its application is not appropriate here, because of missing values NAs).

3. Detecting unusual observations

The search for unusual, weird data points and influential observations is as important as
checking model assumptions, if not a more crucial task indeed. For illustrations, we return
to the savings data set in the faraway package, and to model M1 as defined on page 2.

3.1 Leverage points

First, notice that the function influence() returns values from four vectors or matrices.

• hat: a vector containing the diagonal of the hat matrix (see Boomsma, 2010) –– the
diagonal elements are the so-called leverage points hi.
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• coefficients: unless do.coef is FALSE, a matrix whose ith row contains the resulting
change in the estimated coefficients when the ith case is dropped from the regression.

• sigma: a vector whose ith element contains the estimate of the residual standard devi-
ation obtained when the ith case is dropped from the regression.

• wt.res: a vector of weighted (or for class glm rather deviance) residuals.

For more details, use the following commands:

> help(influence) # details of the four vectors/matrices

> M1 inf <- influence(M1) # the listed influence information

> M1 inf$hat # leverages h i of savings data

> summary(M1 inf$hat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.03730 0.06427 0.07502 0.10000 0.09702 0.53150

. The purpose of leverages hi is to detect outliers in explanatory variables Xj.

Outliers, according to Stevens (1992), are values of hi > 2p/n; here 2p/n = 10/50 = 0.20.

> which(M1 inf$hat > 0.20)

Ireland Japan United States Libya

21 23 44 49

> sum(M1 inf$hat) # sum equals number of predictors

[1] 5

As an efficient alternative, the function hatvalues() could be used, as recommended in the
R documentation of influence().

> hatvalues(M1); sum(hatvalues(M1))

• Half-normal plots for leverages

Plot the data against the positive normal quantiles. We are looking for outliers. The function
halfnorm() is implemented in the faraway package.

> par(mfrow=c(1,1))

> countries <- rownames(savings) # stores names of countries
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> halfnorm(lm.influence(M1)$hat, labs=countries, ylab="Leverages")

In this half-normal plot, the labels of countries having the two largest leverages are shown
by default, see help(halfnorm).

R has a function for lm() objects, plotting leverage points against standardized residuals (as
defined by R), and ranges of Cooks’s distances.

> plot(M1, which=5) # leverage against R’s standardized residuals

3.2 Outliers

• Standardized residuals

> M1 sum <- summary(M1) # linear model 'M1' for savings rate 'sr'
> M1 sum # summary of estimated model, as shown before

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)

Residuals:

Min 1Q Median 3Q Max

-8.2422 -2.6857 -0.2488 2.4280 9.7509

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.5660865 7.3545161 3.884 0.000334

pop15 -0.4611931 0.1446422 -3.189 0.002603

pop75 -1.6914977 1.0835989 -1.561 0.125530

dpi -0.0003369 0.0009311 -0.362 0.719173

ddpi 0.4096949 0.1961971 2.088 0.042471

Residual standard error: 3.803 on 45 degrees of freedom

Multiple R-Squared: 0.3385, Adjusted R-squared: 0.2797

F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

> M1 sum$sig # sqrt(MSE)

[1] 3.802669
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The statistic sig gives an estimate of residual standard error, as it is called; in fact, sqrt(MSE)
is an unbiased estimator of the standard deviation of εi.

> zresid <- residuals(M1)/(M1 sum$sig) # standardized residuals

> zresid # standardized residuals and country names

> qqnorm(zresid, ylab="Standardized Residuals") # Q-Q plot

> abline(0,1) # line 'y = x'

Under normality, we expect the points to follow the diagonal line y = x, approximately.
Compare this Q-Q plot with that for the unstandardized residuals, shown earlier.

. Diagnostic purpose of standardized residuals: locating large errors in prediction.

For an overview of the names of the arguments that can be selected from the summary table
of the function lm, use the following commands:

> ? summary.lm # summarizing linear model fits

> M1 sum$r.squared # R-squared

> M1 sum$adj.r.squared # adjusted R-squared

• Studentized residuals

> stud <- residuals(M1)/(M1 sum$sig*sqrt(1 - M1 inf$hat))
> stud # Studentized residuals and country names

> qqnorm(stud, ylab="Studentized Residuals") # Q-Q plot

> abline(0,1) # line ’y = x’

Here too, as the Studentized residuals are standardized, we expect the points to follow the
diagonal line y = x, approximately, if normality holds.

. Diagnostic purpose of Studentized residuals: detection of outliers in response variable Y .

Notice that the Studentized residuals stud, as defined above, equal the standardized residu-
als as computed by function rstandard() in R.

> rstandard(M1) # standardized residuals in R

R has a different convention than usual (as in SPSS, for example) in defining standardized
[function rstandard()] and Studentized residuals [function rstudent()], respectively. When
computing these residuals for the i-th data point, the R function rstandard() uses an unbi-
ased estimator of the standard deviation of the observed residuals (not the standard deviation
of the error terms εi, but that of ei). This now accounts for the fact that rstandard is equiv-
alent with the usual formula for Studentized residuals (see Boomsma, 2010). The R function
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rstudent(), on the other hand, calculates residuals from a regression where all points are
used except observation i. The general idea of the functions rstandard() and rstudent()

is to “renormalize the residuals to have unit variance, using an overall and leave-one-out
measure of error variance respectively”; see help(influence.measures).

With this knowledge, for plotting objectives we might as well use a fancier plotting function:

> plot(M1, which=2) # R’s standardized residuals Q-Q plot

It should also be noticed that the package stats incorporates the general function
influence.measures(model), which covers a set of subfunctions for regression (leave-one-
out deletion) diagnostics. Some of these functions will be addressed now. Again, for an
overview see the R documentation:

> ? influence.measures # regression deletion diagnostics

• Jackknifed Studentized residuals

. Diagnostic purpose of Studentized deleted residuals: detection of influential observations,
as well as for validation purposes.

> jack <- rstudent(M1) # leave-one-out Studentized residuals

> jack[which.max(abs(jack))]

Zambia

2.853558

This value of 2.85, the largest Studentized deleted residual, is pretty large for a standard
normal scale. But is it an outlier, we should ask. We could test whether this observation
is an outlier, using a Student’s t-statistic with n − p − 1 degrees of freedom, where p is the
number of predictors in an intercept model. If we would use a Bonferroni correction to have
a minimal overall α level of 0.05, and a significance level α/n for each individual test, the
critical Bonferroni value is computed as follows. Notice that for the savings data n = 50
and p = 5, hence df = 44.

> qt(.05/(50*2), 44) # quantile for two-sided alpha = 0.05

# in a Student’s t-distribution with df = 44

[1] -3.525801

Since 2.85 is less that 3.52, we conclude that Zambia is not an outlier.

The car package contains a Bonferroni outlier test which just calculates the very thing:
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> library(car)

> outlier.test(M1) # equivalent result from the "car" package

max|rstudent| = 2.8536, degrees of freedom = 44,

unadjusted p = 0.0065667, Bonferroni p = 0.32833

Observation: Zambia

3.3 Influential Observations

• Cook’s distance

Cook’s distance measure is a combination of a residual effect and leverage, as shown by
Equation 19 in Boomsma (2010). This combination leads to influence.

. Diagnostic purpose of Cook’s distance measure: the detection of influential observations;
detection of the joint influence of outliers, both in the response variable Y and the ex-
planatory variables Xj.

A half-normal plot can be used to identify influential observations.

> (cook <- cooks.distance(M1))

> countries <- rownames(savings)

> halfnorm(cook, 3, labs=countries, ylab="Cook’s distance")

> which.max(cook)

Libya

49

There are efficient alternative options in the car package:

> plot(cookd(M1))

> identify(1:50, cookd(M1), countries)

But there is also a diagnostic lm plotting function from R itself, providing direct identifying
information:

> plot(M1, which=4) # Cook’s distance measure

We can also plot leverage points against Cook’s distance.
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> plot(M1, which=6) # leverage against Cook’s distance

If we exclude Lybia, we can examine how the fit of the linear regression model changes.

> M1 L <- lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings,

+ subset=(cook < max(cook))

> summary(M1 L) # linear model estimates without Libya

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings,

subset = (cook < max(cook)))

Residuals:

Min 1Q Median 3Q Max

-8.0699 -2.5408 -0.1584 2.0934 9.3732

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.5240460 8.2240263 2.982 0.00465

pop15 -0.3914401 0.1579095 -2.479 0.01708

pop75 -1.2808669 1.1451821 -1.118 0.26943

dpi -0.0003189 0.0009293 -0.343 0.73312

ddpi 0.6102790 0.2687784 2.271 0.02812

Residual standard error: 3.795 on 44 degrees of freedom

Multiple R-Squared: 0.3554, Adjusted R-squared: 0.2968

F-statistic: 6.065 on 4 and 44 DF, p-value: 0.0005617

> M1 inf <- influence(M1); M1 inf$coef

Recall that in the coefficients matrix M1 inf$coef, the ith row contains the change in the
estimated coefficients which results when the ith case is dropped from the regression.

> M1 inf$coef[,2]

The second column of M1 inf$coef is related to the regression coefficient of pop15, the first
explanatory variable (after the intercept term).

> plot(M1 inf$coef[,2], ylab="Change in pop15 coefficient")

> abline(h=0)

> identify(1:50, M1 inf$coef[,2], countries) # identify plotted points

# use 'Esc' to leave plot
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Here, we have plotted the change in the second parameter estimate when a single case is left
out. The identify() function was used to identify plotted points. The country with the
largest change could also be identified with the following command:

> which.max(abs(M1 inf$coef[,2]))

Japan

23

The previous plot should be repeated for the other coefficients. In the last plot, Japan is an
influential observation. We might therefore examine the effect of removing this country from
the sample data.

> M1 J <- lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings,

+ subset=(countries != "Japan"))

> summary(M1 J) # linear model estimates without Japan

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings,

subset = (countries != "Japan"))

Residuals:

Min 1Q Median 3Q Max

-7.9969 -2.5918 -0.1150 2.0318 10.1571

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.9401714 7.7839968 3.076 0.00361

pop15 -0.3679015 0.1536296 -2.395 0.02096

pop75 -0.9736743 1.1554502 -0.843 0.40397

dpi -0.0004706 0.0009191 -0.512 0.61116

ddpi 0.3347486 0.1984457 1.687 0.09871

Residual standard error: 3.738 on 44 degrees of freedom

Multiple R-Squared: 0.277, Adjusted R-squared: 0.2113

F-statistic: 4.214 on 4 and 44 DF, p-value: 0.005649

. Compare the results of this model with those of the full model.

4. Checking the structure of the model

In this section we check whether the systematic part of the model, E(Y) = Xβ, is correct.
Questions under investigation here are, for example: Does the linearity assumption hold?
What is the effect of Xj on Y ?
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• Added variable plot or partial regression plot

We could regress the Xs on Y without explanatory variable Xj, and get residuals δ̂ which
represent Y with the other X-effect (j’ != j) taken out. Similarly, if we regress Xj on all
X except Xj, we get residuals γ̂, which represent Xj with the other X-effects taken out.

The added variable plot shows δ̂ against γ̂. Look for non-linearity, outliers, and influential
observations in the plot.

The estimated slope of a line fitted to this plot is bj. The partial regression plot shows the
marginal relationship between the response and an explanatory variable, after the effect of
the other explanatory variables has been removed (partialled out). We focus here on the
relationship between one predictor, pop15, and the response sr.

> delta <- residuals(lm(sr ˜ pop75 + dpi + ddpi, data=savings))

> gamma <- residuals(lm(pop15 ˜ pop75 + dpi + ddpi, data=savings))

> plot(gamma, delta, xlab="pop15 residuals", ylab="savings residuals")

> M1d <- lm(delta ˜ gamma) # linearity between residuals?

> coef(M1d)

(Intercept) gamma

5.425926e-17 -4.611931e-01

> coef(M1) # coefficients of the full linear model

(Intercept) pop15 pop75 dpi ddpi

28.5660865407 -0.4611931471 -1.6914976767 -0.0003369019 0.4096949279

> abline(coef(M1d)["(Intercept)"], coef(M1d)["gamma"], col="red")

> abline(0,coef(M1)["pop15"], col="blue")

The added variable plot function av.plots() in the car package does a similar job. The
reader might have inferred by now that car is the acronym of Companion to Applied Regres-
sion, the (2002) book of John Fox.

> av.plots(lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings))

> av.plots(M1) # for short

? av.plots

The help documentation of av.plots() shows options for variable selection and point iden-
tification.
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. Notice that the slope in the residual plot and the slope for pop15 in the full regression
model are the same.

• Partial residual plot

This competitor of the added variable plot, plots ei + bjXij against Xj. Again, the estimated
slope will be bj. Partial residual plots are better for the detection of linearity, added variable
plots are better for the detection of outliers and influential data points.

> plot(savings$pop15, residuals(M1)+coef(M1)["pop15"]*savings$pop15,
+ xlab="pop15", ylab="Savings Adjusted")

> abline(0,coef(M1)["pop15"])

More directly, the partial residual plot function prplot() from the faraway package can be
used, which provides the same result.

Notice that the source file wilcox14.R contains a (different) function with the label prplot(),
which might cause interaction problems (error messages) at some point –– check with com-
mand fix(prplot).

> source("wilcox14.R") # load source file 'wilcox14.R'
> prplot(M1, 1) # partial residual plot, where the second

# argument indexes the explanatory variable

The function cr.plots [component + residual (partial residual) plots] in the car

package could also be used.

> cr.plots(lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings),

+ variable="pop15")

> cr.plots(M1, variable="pop15") # for short

It appears from these plots that there are different relationships in two groups: a group with
a low percentage of the population under 15 years (pop15), and a group with a high percent-
age of pop15. A division could be made at pop15 = 35. We could, therefore, perform two
separate analyses, one for each group. First we identify the groups, as follows:

> subset(savings, pop15 < 35) # rich countries, it seems

> subset(savings, pop15 > 35) # poor countries

> M1 low <- lm(sr ˜ pop15+pop75+dpi+ddpi, data=savings, subset=(pop15 < 35))

> M1 high <- lm(sr ˜ pop15+pop75+dpi+ddpi, data=savings, subset=(pop15 > 35))
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> summary(M1 low)

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings,

subset = (pop15 < 35))

Residuals:

Min 1Q Median 3Q Max

-5.5890 -1.5015 0.1165 1.8857 5.1466

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.9617950 8.0837502 2.964 0.00716

pop15 -0.3858976 0.1953686 -1.975 0.06092

pop75 -1.3277421 0.9260627 -1.434 0.16570

dpi -0.0004588 0.0007237 -0.634 0.53264

ddpi 0.8843944 0.2953405 2.994 0.00668

Residual standard error: 2.772 on 22 degrees of freedom

Multiple R-Squared: 0.5073, Adjusted R-squared: 0.4177

F-statistic: 5.663 on 4 and 22 DF, p-value: 0.002734

> summary(M1 high)

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings,

subset = (pop15 > 35))

Residuals:

Min 1Q Median 3Q Max

-5.55105 -3.51012 0.04428 2.67638 8.49830

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.4339689 21.1550278 -0.115 0.910

pop15 0.2738537 0.4391910 0.624 0.541

pop75 -3.5484769 3.0332806 -1.170 0.257

dpi 0.0004208 0.0050001 0.084 0.934

ddpi 0.3954742 0.2901012 1.363 0.190

Residual standard error: 4.454 on 18 degrees of freedom

Multiple R-Squared: 0.1558, Adjusted R-squared: -0.03185

F-statistic: 0.8302 on 4 and 18 DF, p-value: 0.5233
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. Try to interpret the results of these analyses, and draw appropriate conclusions. Notice,
for example, the different estimates of the residual standard errors in the two groups, and
the different R-squared values.

5. More diagnostics

The general suite of functions influence.measures(model) also contains the functions
dffits(model), dfbeta(model), dfbeta(model) and dfbetas(model), as described by
Boomsma (2010).

In Section 4 we have not discussed regression diagnostics with respect to the problem of
multicollinearity. It practice, this potential problem should not be left unattended, of course.
Many of the regression diagnostics described above can also be used for generalized linear
model fitting. The stats package contains the workhorse function gls(), by which we can
work with non-normal error distributions –– like the families of binomial, Poisson and gamma
distributions –– and link functions as well.
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