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Abstract: In this paper we consider a specific post-treatment complication that may

arise in both randomized and observational studies, namely the problem of nonignor-

able nonresponse on an outcome variable. This is a typical topic usually known in the

econometric literature as endogenous selection; here we tackle this problem specifi-

cally within a causal inference framework. By exploiting Principal Stratification, we

analyze and propose identification strategies with and without the availability of an

instrumental variable for nonresponse.

We focus on the different role and meaning of the instrumental variable, also by

comparing our framework with a general nonseparable selection model setting. As a

motivating example we consider a simplified evaluation study in the field of financial

aids to firms, where typically missingness on the outcome variables, such as variables

related to firms’performances, can rarely be assumed missing at random.

Keywords: causal inference, nonresponse, principal stratification, instrumental vari-
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1 Introduction

When the goal of inference is estimating causal effects, we usually have to face problems related

to how data are observed. In observational studies, the most relevant of such problems is the fact

that assignment to treatment is not under the control of the investigator; in addition some studies,

both observational and experimental, may be affected by different sorts of post-treatment selection

of observations due to, e.g., non response, truncation or censoring “due to death”. Moreover, one

may be interested in decomposing the total effect of a treatment on an outcome into a direct effect

and an indirect one mediated by another intermediate variable. All such complications require to

somehow control for them, but the use of the standard statistical conditioning may be in general

improper (Rubin, 1978; Heckman, 1974; Rosembaum, 1984; Rubin, 2004).

A relatively recent approach to deal with post-treatment complications is Principal Stratifica-

tion (PS), as first defined by Frangakis and Rubin (2002) within the framework of the Rubin Causal

model (Rubin, 1974; Holland, 1986) and applied mainly in experimental studies (Barnard et. al.,

2003; Zhang et. al., 2006; Mattei and Mealli, 2007). In Frangakis and Rubin (2002), PS was intro-

duced in order to give a formal definition of surrogate endpoints; it was then used to define direct

and indirect effects (Mealli and Rubin, 2003). As Rubin (2004) points out, the PS framework can

be viewed as having its seeds in the Instrumental Variables (IV) method of estimation of causal

effects. Indeed, the approach to adjust for noncompliance applied in Angrist, Imbens and Rubin

(1996) and in Imbens and Rubin (1997) is a special application of the PS framework, where the

compliers are a principal stratum with respect to the post-treatment compliance behavior.

Despite the use of PS to solve particular issues, the framework appears to be a very general one,

that can be applied in various contexts, also not originally related to causal inference (Frangakis

et al., 2007). Furthermore, the framework may lead to both parametric and semi(non)parametric

inference, depending on the set of assumptions that can be reasonably maintained, as well as

whether point or partial identification is to be achieved.

In the econometric literature post-treatment complications are usually described as problems

of endogenous selection and include treatment assignment in observational studies, self-selection,

non response, censoring or truncation “due to death”. They are usually represented by means of
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selection models (SM, Heckman, 1974; Gronau, 1974). Since the seminal work of Heckman, var-

ious extentions of the model have been proposed, which include semi and nonparametric versions

(Pagan and Ullah, 1997; Vella, 1998). While parametric selection models can be rather restrictive

in terms of distributional assumptions, semi and nonparametric extensions usually require addi-

tional exclusion restrictions (instrumental variables) to maintain point-identification of (causal)

functionals of interest (parameters, conditional expectations, partial derivatives, probability distri-

butions). Identification issues in general nonseparable structural equation models is reviewed in

Imbens (2006).

In this paper we consider a specific endogenous selection problem, namely a nonignorable

nonresponse on an outcome variable. Other complications are not explicitly treated, such as en-

dogenous treatmente assignment. measurement errors, censoring due to death. In particular, hy-

potheses on the exogeneity of the treatment are assumed to hold by design (experimental case)

or by assumptions (e.g., unconfoundedness in observational studies). Using Principal Stratifica-

tion, we show which causal estimands may be identified and estimated under different sets of

assumptions, in particular depending on the existence of a variable that may serve as an instru-

ment, in some sense, for nonresponse. Indeed, causal inference requires some assumptions about

the population, the sampling process and the behavior of the subjects under study. The credibility

of (causal) inference decreases with the strength of the assumptions maintained (Manski, 2003).

Note that hypotheses are not all on the same ground, and they may have different nature, as well

as a different degree of agreement.

We focus on the different role and meaning of the instrumental variable, also by comparing

our framework with a general nonseparable selection model setting. We also argue that Principal

Stratification is able to suggest alternative identification strategies not always easily translated into

assumptions of a selection model.

In order to support our reasoning we consider, as a motivating example, a simplified evaluation

study in the field of financial aids to firms, where typically nonresponse on the outcome variables,

such as variables related to firms’performances, can rarely be assumed missing at random.

The paper is organized as follows: in section 2 principal stratification is presented together with
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its main characteristics; section 3 is devoted to recall the basic features of simultaneous equation

systems with a sample selection equation. In section 4, we describe our working example and

show partial and point identification strategies in the absence of an instrumental variable.

Section 5 introduces an instrumental variable for nonresponse. The instrument can be inter-

preted as an additional intervention, i.e., a treatment variable, or as an additional post-treatment

variable. We consider alternative hypotheses characterizing the instrument that may allow to point-

identify specific causal estimands. Section 6 summarizes our findings and concludes.

2 Principal Stratification and its Role for Causal Inference in

Experimental and Observational Studies

Principal stratification has been first introduced by Frangakis and Rubin (2002), in order to address

post-treatment complications in an experimental setting. The framework can, however, be easily

extended to an observational setting under specific hypotheses on the assignment mechanism. We

first introduce “potential outcomes” (see Rubin, 1974) for one post-treatment variable, Y , and a

binary treatment, T . If unit i in the study (i = 1, . . . ,N) is to be assigned to treatment T = t

(t = 1 for treatment and t = 0 for no treatment), we denote by Yi(1) and Yi(0) the two potential

outcomes, either of which can be observed depending on the value of T . A causal effect of T on

Y is defined, on a single unit, as a comparison between Yi(1) and Yi(0). The fact that only two

potential outcomes for each unit are defined reflects the acceptance of the SUTVA (Stable Unit

Treatment Value Assumption, Rubin, 1980) assumption, which rules out interference between units

and difference versions of the treatment for the units. We also denote with S i(t) a post-treatment

potential variable, which is, without loss of generality, assumed to be an indicator equal to 1 if a

specific post-treatment event happens and 0 otherwise. For instance, S may represent a response

indicator for a specific item in a questionnaire, or a survival indicator: in these examples, S i(t) = 0

precludes the observation of Yi(t).

In an observational setting, various hypotheses can be posed on the assignment mechanism.

In what follows, we will assume that treatment assignment is unconfounded given a vector X of
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observed pre-treatment variables:

Assumption PS 1 : T⊥⊥S (0), S (1),Y(0),Y(1)|X.

In other words, we assume that within cells defined by the values of pre-treatment variables X,

the treatment is randomly assigned or, at least, is assigned independently of the post-treatment

variables considered relevant for the study. If we indicate with ti the observed treatment assigned

and received, the observed data are

(
ti, S (ti),Y(ti), xi

)
i = 1, . . . ,N.

Consider now the potential post-treatment variables S i(0) and S i(1). Within each cell defined by

specific values of the pretreatment variables, the units under study can be stratified into four latent

groups, named Principal Strata, according to the joint value of the potential variables (S i(0), S i(1));

the strata are the following:

11 = {i : S i(1) = S i(0) = 1}

10 = {i : S i(1) = 1, S i(0) = 0}

01 = {i : S i(1) = 0, S i(0) = 1}

00 = {i : S i(1) = S i(0) = 0}.

Define the population proportions of units belonging to each stratum in the cell X = x as π11|x, π10|x,

π01|x, and π00|x = 1−π11|x−π10|x−π01|x. This stratification of units corresponds to the basic principal

stratification, as defined in Frangakis and Rubin (2002): the basic principal stratification P0 with

respect to post-treatment variable S is the partition of units i = 1, · · · , n such that, within any set

of P0, all units have the same vector of (S i(0), S i(1)). More generally, a principal stratification P

with respect to post-treatment variable S is a partition of the units whose sets are unions of sets

in the basic principal stratification P0. Let Gi represent the principal stratum to which subject i
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belongs, Gi = {11, 10, 01, 00}. The principal stratum membership, Gi, is not affected by treatment

assignment ti, so it only reflects characteristics of subject i, and can be regarded as a covariate,

which is only partially observed in the sample (Angrist et al., 1996); by unconfoundedness, how-

ever, it is guaranteed to have the same distribution in both treatment arms, within cells defined by

pre-treatment variables. We usually need to adjust for the principal strata, which synthesize impor-

tant unobservable characteristics of the subjects in the study. Note that Assumption PS1 implies

the following: Y(0),Y(1)⊥⊥T |S (0), S (1), X: potential outcomes are, therefore, independent of the

treatment given the principal strata. This implication confirms the idea that treated and control

units can be compared conditional on a principal stratum. In some sense, we can state that princi-

pal strata play a similar role of control functions in deriving independence conditions, even if not

derived from a model.

Usually, information on causal effects is contained in a particular principal stratum and, as a

consequence, evidence on causal effects is sought only for this specific stratum. In the present

exemplified context, direct information on the causal effect can be found in the 11 stratum (e.g.,

respondents or survivors under treatment and control), because only for units belonging to this

stratum one can consistently compare Y(1) and Y(0): if S represents non response or death, in

fact, in all strata but 11 only one potential outcome or none can be observed, so that the causal

effect which can be estimated is an effect within stratum, e.g., the average effect E(Y(1)−Y(0)|11).

Indeed, this is a principal causal effect, which is a properly defined causal effect, because it is

obtained as a comparison on a common set of units, as defined in Frangakis and Rubin (2002)

(equation 2.1).

The purpose of inference is to estimate the probabilities of strata belonging (π11|x, π10|x,π01|x)

and the distribution of the potential outcomes within each stratum, under different identifying

distributional and behavioral assumptions.

Note that the same framework can be easily extended to cases with non binary treatment,

non binary post-treatment variable and more than one post-treatment variables. In particular, the

framework will also be used to characterize an instrumental variable for nonresponse, where the

instrument can be interpreted as both an additional treatment, and as an additional post-treatment
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variable.

3 Representing endogenous selection problems by means of si-

multaneous equation systems with a sample selection equa-

tion

The potential outcome framework, on which Principal Stratification rests, is now widely used to

represent causal inference problems. We can however find some connections with the traditional

econometric literature, which relies on structural simultaneous equations to represent causal rela-

tions. In order to represent the causal problem formalized in previous section using PS, consider

the following three-equation structural model:

Yi = g(ti, xi, εi) (1)

S i = h(ti, xi, ηi)

Ti = l(xi, ωi),

where Yi is observed only if S i = 1. The three equations describe causal relationships between

the left- and right-hand side variables; in particular the first equation is the one of primary interest

and it is a primitive for causal inference purposes. Note that, if we do not impose any functional

restrictions on g, h, and l and we do not restrict εi, ηi, and ωi to be scalars, potential outcomes can

be retrieved as:

Yi(t) = g(t, xi, εi) (2)

S i(t) = h(t, xi, ηi),

for t = {0, 1}. We maintain the following hypothesis:

Assumption S M1 : ωi⊥⊥ηi, εi.
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which holds by design if T is randomized and by assumption conditional on some pre-treatment

covariates X under unconfoundedness (see Assumption PS1, section 2). Consequently, and in

order to simplify notation, the third equation in model (1) will be omitted in the sequel, as well as

the covariates X, because we will implicitly condition on them, assuming thus to be within cells

defined by covariates.

Our setup is closely related to the one involving the estimation of the effect of a potentially

endogenous regressor on an outcome, where the endogeneity is due to the association among un-

observables entering the outcome and regressor equations (Imbens, 2006; Hoderlein and Mammen,

2007). As Imbens (2006) points out, in such a setting a possible strategy is to eliminate the en-

dogeneity at least for some subpopulation (types of units), usually characterized by certain values

of the unobservables that induce them to respond to regressors and instruments (if available) in a

specific way2. These subpopulations, as we will see in the sequel, may find a correspondence in

terms of principal strata; with this respect, the simultaneous equation framework provides us with

an alternative viewpoint in the interpretation of identifying assumptions and of estimands that we

will find within the PS approach. In addition, this general equation system offers us the opportu-

nity to review the results developed in the econometric literature by imposing some functional and

distributional restrictions on g, h, and εi, ηi.

Note that the choice of estimands plays a crucial role in our and related approaches, and it

is sometimes questioned if these effects defined for subpopulations are of interest, because they

generally do not correspond to specific policy parameters. We argue again that it is often difficult

to infer on effects that affect the whole population, and it is much easier, namely requires fewer

assumptions, to evaluate treatments that move individuals only locally, by eliminating endogeneity

for some subgroups and not necessarily for others.

In order to avoid such criticism, other approaches follow either a global identification goal of g

or some of its functionals (Imbens and Newey, 2003), or a local identification objective at a fixed

2Vytlacil (2002) shows an equivalence between PS and selection models in the specific linear IV setting. He proves

that assumptions on the principal strata directly translate into assumptions on a selection latent index model and vice-

versa: under the LATE (Latent Average Treatment Effect, Imbens and Angrist, 1994) independence assumption and

the LATE monotonicity assumption the two models are shown to be observationally equivalent.
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position of the regressors (Chesher, 2003, 2005). In these cases identifiability strongly depends on

the nature of regressors (discrete or continuous) and on monotonicity assumptions with respect to

the unobservables. For the identification of average marginal effects, Imbens and Newey (2003),

Altonji and Matzkin (2005) and Hoderlein (2005) provide results without assuming monotonicity

in unobservables, using derivatives of the mean regressions. Some related work can be found

in Florens, Heckman, Meghir and Vytlacil (2005), Chernozhukov, Imbens and Newey (2005),

Chernozhukov and Hansen (2005) and Heckman and Vytlacil (1999, 2001).

A closely related stream of the literature focuses on conditioning directly on the unobserved

components in the selection equation in order to eliminate endogeneity; because these variables

cannot be observed, they can be sometimes consistently estimated using different assumptions and

estimation strategies and used as covariates in a generalized control function approach. Additivity

with respect to the unobservables is usually required. This kind of approach includes parametric

and semiparametric specifications of selection models (Heckman, 1974; Lee, 1982, 1983; Gallant

and Nychka, 1987) and two-step estimation settings (Olsen, 1980; Wooldridge, 1994; Lee, 1984;

Pagan and Vella, 1989; Honore et al., 1997), that may or not include some single-index restrictions

(Cosslet, 1991; Robinson, 1988; Newey, 1990; Lee, 1994; Ahn and Powell, 1993; Choi, 1990; Li

and Wooldridge, 2002; Ichimura, 1993).

The approach we follow is nonparametric: without a priori introducing monotonicity and addi-

tivity of the error terms we use principal stratification to discuss identification issues. In particular,

we show that some parameters can only be partially identified (Manski, 2003) and, more impor-

tantly, propose sets of assumptions to yield point identification of treatment effects for some sub-

populations. We focus on the identification issues assuming that the distribution that are asymptoti-

cally revealed by the sampling process are known, so avoiding to take account of specific statistical

inference problems related to estimation in finite samples.
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4 Identifying causal effect with nonignorable nonresponse on

the outcome

In order to focus on a specific post-treatment complication, which is the main goal of the paper,

we consider, as a motivating example, the following simplified setting concerning the evaluation

of financial aids to firms. Let T be a binary treatment which represents public financial assistance

to firms (T = 1 for treatment and T = 0 for no treatment). We assume that T is unconfounded

given a vector of pre-treatment covariate X; we will implicitly condition on X in what follows, i.e.

we will assume to be within a cell defined by the values of X. The intermediate post-treatment

variable S represents the response to a post-treatment questionnaire on firms’ performances, the

outcome variable of interest being the turnover (sales proceeds) Y . We are facing the post-treatment

complication of a potentially nonignorable missing mechanism of the outcome variable. This

artificial setting is consistent with evidence from the real world, where for Italian sole traders

company accounts are not public and variables on firm performances must be gathered through an

interview. Typically missingness on turnover variables can rarely be assumed missing at random3.

This empirical setting can be formalized within the PS framework as presented in section 2,

where the intermediate binary variable S is the response indicator. There are thus potentially four

latent strata. Without any further restriction and avoiding any form of extrapolation, the only causal

effect on which we can have evidence from the data is the effect within the 11 stratum, because

only for individuals belonging to the stratum we have observations on both Y(1) and Y(0).

In order to highlight the identification issue, we assume to know the distribution that are asymp-

totically revealed by the sampling process without dwelling on issues of statistical inference related

to finite samples. We point out that we will use sample analogs to nonparametrically estimate fea-

tures of the distributions of the observed variables. With this respect it is useful to state the corre-

spondence between observed groups, defined by T and S , and latent strata, as shown in Table 1.

Note that all the four observed groups result from a mixture of two principal strata; without any fur-

3For example, Mattei and Mauro (2007), from a survey of Tuscan artisan enterprises, found evidence of nonignor-

ability of nonresponse.
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Observed subgroups O(T, S ) Turnover Y Latent strata

O(1, 1) = {i : Ti = 1, S i = 1} OBS 11 or 10

O(1, 0) = {i : Ti = 1, S i = 0} · 00 or 01

O(0, 1) = {i : Ti = 0, S i = 1} OBS 11 or 01

O(0, 0) = {i : Ti = 0, S i = 0} · 10 or 00

Table 1: Correspondence between observed and latent strata

ther restriction it is not possible to point-identify the strata proportions, as well as the distribution

of Y within the strata, that would allow to estimate causal effects.

A common assumption used to improve identification is a kind of monotonicity assumption,

that here could be stated as the nonexistence of the 01 stratum: there is no firm which would not

respond under treatment but would respond under control. Under monotonicity, the relationship

between observed and latent groups allows to point-identify at least the strata proportions, because

we are left with two unknown proportions (π11|x and π10|x) and two pieces of sampling information

(coming from the proportions of respondents among treated and control units), as shown in Table

2. It is not however possible to disentangle the distribution of Y in the treatment group between the

Observed subgroups O(T, S ) Turnover Y Latent strata

O(1, 1) = {i : Ti = 1, S i = 1} OBS 11 or 10

O(1, 0) = {i : Ti = 1, S i = 0} · 00

O(0, 1) = {i : Ti = 0, S i = 1} OBS 11

O(0, 0) = {i : Ti = 0, S i = 0} · 10 or 00

Table 2: Correspondence between observed and latent strata under monotonicity

strata 11 and 10. In this case only nonparametric bounds can be derived, unless some parametric

distributional assumptions are introduced. Parametric identification is thus achieved, within the PS

framework, thank to the results on finite mixture distribution theory (see e.g., McLachlan and Peel,

2000), although unlike standard mixture models some units have zero probability of belonging to
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some strata, which may facilitate disentangling the mixture. Indeed, the likelihood function results

in a finite mixture of distributions and identification is straightforward, except when π11|x = π10|x.

In order to alternatively represent the post-treatment complication formalized above using PS,

recall the structural model (1)4:

Yi = g(ti, εi)

S i = h(ti, ηi)

where Yi is observed only if S i = 1. Note that the nonignorability (endogeneity) of S depends

on the association between ε and η. If it were possible to condition on η, S and ε would become

conditionally independent, eliminating the endogeneity problem. Because η cannot be observed,

we can look for a function of η, G(η), called type of unit (Imbens, 2006) such that

ε⊥⊥S |G(η).

A natural choice for G(.) is a function which is constant over values of η that, for all t, lead to the

same value of S :

G(η) = G(η′) if h(t, η) = h(t, η′) ∀t

G(η) , G(η′) if h(t, η) , h(t, η′) for some t.

In fact, in this case ε⊥⊥S |G(η) by construction. Nonresponse becomes ignorable conditional on

the type of unit, so that, once we condition on the value of G, only respondents can be used. This

corresponds to finding a common set of units within the Rubin Causal Model, on which proper

causal estimands can be defined; with this respect, Principal Stratification represents the coarest

choice of the type function. As shown within the PS approach, the comparison of Y between

treated and controls is possible only for some values of G, in particular those with h(0, η) = 1 and

h(1, η) = 1.

Note that, within the structural equation model, in the absence of exclusion restrictions, it

would not be possible to nonparametrically point identify treatment effects and most of the semi-

parametric versions of selection models would require instruments. In a parametric setting without
4The covariates X are omitted, because, as in previous section, we are implicitly conditioning on them, i.e., we are

assuming to be within cells defined by the covariates.
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IV, identification is achieved by joint normality (or by other parametric specification of the joint

distribution), which is a stronger assumption than that required within the PS framework, where

only the distributions of Y within strata must be parameterized. When specifying a mixture model,

distributional assumptions do not usually involve the joint specification of a model for the outcome

and the selection process, but rather refer to distributions for the outcome variables conditional on

the strata. These distributions have explicit implications on the probability law of variables within

observed groups, in terms of mixture distributions, so that the theory on mixture models can be

exploited for both identification and specification testing5.

5 Identifying causal effect with nonignorable nonresponse on

the outcome and an instrumental variable

As said in sections 3 and 4, the lack of nonparametric identification in the presence of endogenous

selection is at least partially solved by introducing some exclusion restriction, i.e., by introducing

a variable that may serve as an instrument for nonresponse. In what follows, we will consider

the availability of an instrumental variable Z, that we will characterize, together with the related

assumptions, in terms of its nature, whether it can be regarded as a) an additional intervention or

b) as an additional post-treatment variable. Note that in an observational setting all the identifying

hypotheses are assumed to hold conditional on the covariates; indeed in the IV literature methods

to control for covariates have been introduced because “instruments may require conditioning on

a set of covariates to be valid” (Abadie, 2003).

We will use PS in order to define meaningful subpopulations of units, to present identifying

assumptions and estimands, although they will be also translated into the simultaneous equations

framework.

First suppose that, in addition to treatment T , whose causal effect on Y is still our primary inter-

5Some simulation results are shown in an extended version of the paper and in Mealli, Pacini (2007), when paramet-

ric specifications are exploited to achieve identification. Simulations are aimed at studying the different performances

of PS and parametric selection models together with their robustness.
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est, units are exposed to an additional treatment which is, in a broad sense to be further specified,

related to nonresponse S but unrelated to the outcome Y . In our example, suppose that several

persons with a different job task may respond to the phone interview, and define Z the indicator

variable which assumes value 1 if an employee responds and 0 if the owner responds.

Because now we have two binary treatments, T and Z, four potential outcomes can be defined

for each post-treatment variable, Y and S in our case: S (t, z), Y(t, z) for t = 0, 1 and z = 0, 1. Both

treatments are assumed randomized conditional on a set of pre-treatment covariates (on which we

implicitly condition) so that the following hypotheses hold:

Assumption PS 2 : T⊥⊥S (0, 0), S (0, 1), S (1, 0), S (1, 1),Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1)

Assumption PS 3 : Z⊥⊥S (0, 0), S (0, 1), S (1, 0), S (1, 1),Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1)

In order to characterize Z as an instrument, we impose the following exclusion-restriction type of

assumption:

Assumption PS 4 : Y(0, 0) = Y(0, 1) and Y(1, 0) = Y(1, 1)

which says that for beneficiaries, and for non beneficiaries, the value assumed by the instrument

(i.e., the person who responds to the phone interview) is unrelated to the outcome (turnover).

Because the post-treatment response indicator is also binary, 16 principal strata can be defined,

if no other restriction is imposed (see Table 3).

The specific selection problem with one instrument can be alternatively formalized in the simulta-

neous equations framework as follows:

Yi = g(ti, εi) (3)

S i = h(Zi, ti, ηi)

where Y is observed only if S = 1 and Y⊥⊥\S . The hypotheses concerning Z and T are stated as:

Assumption S M2 : T⊥⊥(ε, η)
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G S(0,0) S(0,1) S(1,0) S(1,1)

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

4 0 0 1 1

5 0 1 0 0

6 0 1 0 1

7 0 1 1 0

8 0 1 1 1

9 1 0 0 0

10 1 0 0 1

11 1 0 1 0

12 1 0 1 1

13 1 1 0 0

14 1 1 0 1

15 1 1 1 0

16 1 1 1 1

Table 3: Principal strata with two binary treatments and a binary intermediate variable

Assumption S M3 − 4 : Z⊥⊥(ε, η).

Note that Assumption SM3-4 includes both the hypothesis of randomization (Ass. PS3) and the

exclusion restriction (Ass. PS4). The classification of units in 16 strata can be retrieved in this

framework by defining the type of unit function, G, such that:

G(η) = G(η′) if h(z, t, η) = h(z, t, η′) ∀z, t

G(η) , G(η′) if h(z, t, η) , h(z, t, η′) for some z, t.

Let’s now analyze how the presence of an instrument can be exploited to achieve identification

of some causal estimands. Using the potential outcome language, assume that the instrument is

perfect, in the sense that, for certain level of the instrument Z, S is always equal to 1, i.e.:
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Assumption PS 5 : S (0, 1) = 1 and S(1, 1) = 1.

This additional assumption, which can be easily verified from the data6, removes some of the

strata (1 − 5,7,9− 13,15); the remaining 4 strata (see Table 4) allows to point identify the marginal

distribution of Y(T = 0) and Y(T = 1), so that all estimands involving only these marginals, as the

AT E (Average Treatment Effect), can be identified.

G S(0,0) S(0,1) S(1,0) S(1,1)

6 0 1 0 1

8 0 1 1 1

14 1 1 0 1

16 1 1 1 1

Table 4: Principal strata with two binary treatments and a binary intermediate variable, under

Assumption PS5

Indeed, Assumption PS4 implies that f (Y(0, 1)) = f (Y(0, 0)) = f (Y(T = 0)) and f (Y(1, 0)) =

f (Y(1, 1)) = f (Y(T = 1)). As we can see from Table 4, Y(0, 1) and Y(1, 1) can always be observed

in all the four strata due to the perfect instrument assumption, so that f (Y(T = 0)) and f (Y(T = 1))

can be identified and estimate using observations where Z = 1.

The same result can be obtained following Manski (2003); the goal there is how to identify the

marginal distribution of a variable which is subject to a nonignorable missing mechanism. This

result turns out to be useful also in a causal inference framework where usually some features of

the distribution of two variables, namely Y(T = 0) and Y(T = 1), are of interest: the properties of

the instrumental variable Z allow to estimate the two marginal distributions separately7.

Furthermore, note that, even if not stated precisely in the same terms, the use of a key variable,

6With this respect, note that one may choose or construct an instrumental variable having such a property.
7Manski’s result can be shown as follows. Suppose to have three variables Y , S , and Z, and suppose the distribution

of Y , F(Y) is of interest. A random sample from the population is available, however Y is observed only if S = 1,

and F(Y) , F(Y |S = 1). The following conditional distributions can be estimated from observed data: F(Y,Z|S = 1),

F(Z|S = 1), and F(Z|S = 0). Assuming that F(Y |Z) = F(Y) (exclusion restriction) and P(S = 1|Z = 1) = 1 (perfect

instrument), F(Y) can be identified.
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with the same features of our Z, has been exploited by Frangakis et al. (2007) within a Principal

Stratification Design, in order to draw valid inference for the marginal distribution of some input

data nonignorably missing (missing due to death).

5.1 Alternative structural assumptions

Finding or constructing an instrumental variable that, in addition to the exclusion restriction, is

perfect in the sense of Assumption PS5 can be a difficult task and sometimes cannot be defendable

empirically. Alternative identification assumptions can be stated as forms of monotonicity of S :

Assumption PS 6 : S (t, 0) ≤ S (t, 1) ∀t

Assumption PS 7 : S (0, z) ≤ S (1, z) ∀z.

Assumption PS6 is a weaker behavioral assumption than Assumption PS5 and relates to the re-

sponse behaviour w.r.t. the instrument: for a fixed treatment level, units responding when Z = 0

would respond also when Z = 1. Analogously, Assumption PS7 relates to the response behaviour

w.r.t. the treatment: for a fixed value of the instrument, units responding when under control

would respond also when treated. As far as the structural model is concerned, these monotonicity

assumptions refer to a specific constraint on the function h(.) for fixed values of η (Imbens, 2006):

Assumption S M6 : h(t, 0, η) ≤ h(t, 1, η) ∀t,∀η
Assumption S M7 : h(0, z, η) ≤ h(1, z, η) ∀z,∀η.

The two assumptions imply the non-existence of some of the 16 strata in Table 3. As should be

clear from Table 5, it is not possible to identify the proportions of the strata, except for the first and

the last ones8. Analogously, only for the last stratum we can estimate the distribution of Y(T = 0),

because the distribution of Y(T = 0,Z = 0) is identified and is equal to Y(T = 0,Z = 1), thank to

8Note, in fact, that the proportion of stratum 0000 can be estimated by the proportion of non-respondents within the

observed group where T = 1 and Z = 1; whereas the proportion of stratum 1111 can be estimated by the proportion

of respondents within the observed group where T = 0 and Z = 0.
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G S(0,0) S(0,1) S(1,0) S(1,1)

1 0 0 0 0

2 0 0 0 1

4 0 0 1 1

6 0 1 0 1

8 0 1 1 1

16 1 1 1 1

Table 5: Principal strata with two binary treatments and a binary intermediate variable, under

Assumptions PS6 and PS7

the exclusion restriction (Ass. PS4). Additional assumptions are required in order to either reduce

the number of strata or state the equivalence of the distribution of Y across some strata.

Here we propose the following set of identifying assumptions:

Assumption PS 8 : Stratum 0001 does not exists

which states that it is not possible to react to the instrument only if treated: if one reacts under

treatment, the same must be true under control.

Assumption PS 9 : Y(1, 0)⊥⊥S (1, 0)|S (0, 0) = 0, S (0, 1) = 1, S (1, 1) = 1

which assumes the (latent) ignorability of nonresponse for a union of strata, having the same re-

sponse behaviour for all the combinations of values of Z and T but one. Under previous assump-

tions, this amounts to state that the distribution of Y(1, 0) is the same within stratum 6 or 8.

We will now show that, under previously stated assumptions (PS1-PS4 and PS6-PS9), one can

identify and estimate the causal effect of T on a specific subset of units, namely those reacting to

the instrument under control and/or under treatment, which are precisely strata 6 and 89.

First of all, note that we are now left with 5 strata (G = 1, 4, 6, 8, 16); there are thus 4 free
9The same estimator estimates the effect only for latent stratum 6 if we assume Y(0, 1)⊥⊥S (1, 0)|S (0, 0) =

0, S (0, 1) = 1, S (1, 1) = 1 instead of PS9.
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of variation strata proportions to be estimated (π4, π6, π8, π16). These can indeed be identified

because we have 4 sampling response proportions ( p̂(S = 1|T = 1,Z = 1), p̂(S = 1|T = 0,Z = 0),

p̂(S = 1|T = 0,Z = 1), p̂(S = 1|T = 1,Z = 0)); estimation can be performed by a method of

moment strategy, i.e. equating empirical and theoretical proportions (e.g., p̂(S = 1|T = 1,Z = 1) =

π4 + π6 + π8 + π16).

For sake of simplicity, from now on we focus on the estimation of means and thus on Aver-

age Treatment Effects. Under control we can estimate the following mean Ȳ(t, z|S = 1), where

Ȳ(0, 1|S = 1) is the mean of Y for respondents with T = t and Z = z, which can be written as

Ȳ(0, 1|G = 6)π6 + Ȳ(0, 1|G = 8)π8 + Ȳ(0, 1|G = 16)π16

π6 + π8 + π16
.

We can also estimate Ȳ(0, 0|S = 1), which is equal to Ȳ(0, 0|G = 16) and also to, by the exclusion

restriction, Ȳ(0, 1|G = 16). By estimating these quantities and the strata proportions, we can, by

difference, obtain an estimate of Ȳ(0, 1|G = 6)π6 + Ȳ(0, 1|G = 8)π8.

Similarly, under treatment we can estimate the following means:

Ȳ(1, 0|S = 1) =
Ȳ(1, 0|G = 4)π4 + Ȳ(1, 0|G = 8)π8 + Ȳ(1, 0|G = 16)π16

π4 + π8 + π16

and Ȳ(1, 1|S = 1) =

Ȳ(1, 1|G = 4)π4 + Ȳ(1, 1|G = 8)π8 + Ȳ(1, 1|G = 6)π6 + Ȳ(1, 1|G = 16)π16

π4 + π6 + π8 + π16

which, by Assumption 9, is equal to:

Ȳ(1, 1|G = 4)π4 + Ȳ(1, 1|G = 8)(π8 + π6) + Ȳ(1, 1|G = 16)π16

π4 + π6 + π8 + π16
.

By difference, we can now obtain an estimate of Ȳ(1, 1|G = 8) which can be contrasted to

Ȳ(0, 1|G = 6)π6 + Ȳ(0, 1|G = 8)π8

π6 + π8

to obtain an estimate of the average causal effect of T within strata 6 and 8 (i.e, for units reacting

to the instrument), E[Y(T = 1) − Y(T = 0)|G ∈ {6, 8}]:
ˆ̄Y(1, 1|S = 1) · (π̂4 + π̂6 + π̂8 + π̂16) − ˆ̄Y(1, 0|S = 1) · (π̂4 + π̂8 + π̂16)

π̂6
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−
ˆ̄Y(0, 1|S = 1) · (π̂6 + π̂8 + π̂16) − ˆ̄Y(0, 0|S = 1) · π̂16

π̂6 + π̂8

where ˆ̄Y(t, z|S = 1) is the sample average of Ȳ for respondents with treatment T = t and instrument

Z = z.

Assumptions PS8 and PS9 may find a correspondence in terms of assumptions within the struc-

tural model approach. However, the assumptions would translate into specific constraints on the

values of h(.) and specific conditional independence hypotheses between η and ε that would not

have a natural behavioral interpretation in this framework and would, thus, not easily suggested.

An assumption which could be an alternative to Assumption PS8, with a proper meaning within

the structural approach, is a sort of monotonicity of h(.) w.r.t. η:

Assumption S M8 : h(t, z, η) ≤ h(t, z, η′) ∀t, z, η ≤ η′.

Within the Principal Stratification framework this would be equivalent to introduce a natural or-

dering of the strata and eliminate the strata contradicting the order; for example, in Table 4 strata

4 and 6 could not simultaneously exist. Supposing that stratum 6 does not exist and formulating

Assumption PS9 as Y(1, 0)⊥⊥S (1, 0)|S (0, 0) = 0, S (0, 1) = 0, S (1, 1) = 1, it could be easily shown

that identification is now achieved for the causal effect of T for strata 8 and 16, i.e, for the always

respondents and the units reacting to the instrument under control. In this case the estimator is

equal to:

Ê[Y(T = 1) − Y(T = 0)|G ∈ {8, 16}] =

ˆ̄Y(1, 0|S = 1) · (π̂4 + π̂8 + π̂16) − [ ˆ̄Y(1, 1|S = 1) · (π̂2 + π̂4 + π̂8 + π̂16) − ˆ̄Y(1, 0|S = 1) · (π̂4 + π̂8 + π̂16)] · π̂4
π̂2

π̂8 + π̂16

− ˆ̄Y(0, 1|S = 1).

Alternatively, supposing that stratum 4 does not exist and formulating Assumption PS9 as Y(0, 0)⊥⊥
S (0, 0)|S (1, 0) = 1, S (0, 1) = 1, S (1, 1) = 1, identification is again achieved for the causal effect of

T for strata 8 and 16, but the estimator in this case simply:

ˆ̄Y(1, 0|S = 1) − ˆ̄Y(0, 0|S = 1).
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Choosing between Assumption PS8 and SM8 is a subject matter; it can be also suggested by the

data. Indeed, as well known in a causal inference problem, the identification strategy depends on

the plausibility of the assumptions with respect to the specific empirical context.

5.2 Alternative assumptions for the instrument

So far, the instrument Z has been considered as an additional treatment, which is thus subject to

assume any possible value, and its value could be under the control of an experimenter (see Rubin,

2004, and related discussion).

Consider now Z as an additional post-treatment variable, that precedes nonresponse and can be

added to the other potential outcome variables. Because we now have only one binary treatment,

T , two potential outcomes can be defined for each post-treatment variable, Z, S , and Y: Z(t),

S (t), Y(t) for t = 0, 1. The treatment is assumed randomized conditional on a set of pre-treatment

covariates (on which we implicitly condition) so that the following hypothesis hold:

Assumption PS 10 : T⊥⊥Z(0),Z(1), S (0), S (1),Y(0),Y(1).

In order to characterize Z as an instrument, we impose the following exclusion-restriction type of

assumption:

Assumption PS 11 : Y(0)⊥⊥Z(0) and Y(1)⊥⊥Z(1).

Principal strata are now defined as the joint value of the 4 intermediate potential variables (Z(0),

Z(1), S (0), and S (1)) as shown in Table 6.

The specific selection problem with one instrument can be alternatively formalized in the si-

multaneous equations framework as follows:

Yi = g(ti, εi) (4)

S i = h(Zi, ti, ηi)

Zi = m(ti, νi)
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G Z(0) Z(1) S(0) S(1)

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

4 0 0 1 1

5 0 1 0 0

6 0 1 0 1

7 0 1 1 0

8 0 1 1 1

9 1 0 0 0

10 1 0 0 1

11 1 0 1 0

12 1 0 1 1

13 1 1 0 0

14 1 1 0 1

15 1 1 1 0

16 1 1 1 1

Table 6: Principal strata with one binary treatments and two binary intermediate variables

where Y is observed only if S = 1 and Y⊥⊥\S . The hypotheses concerning Z and T are stated as:

Assumption S M10 : T⊥⊥(ε, η, ν)

Assumption S M11 : Z⊥⊥(ε).

Note that Assumption SM11 corresponds to the exclusion restriction (Ass. PS11). The new clas-

sification of units in 16 strata can be retrieved by defining the type of unit function, G, such that:

G(η, ν) = G(η′, ν′) if h(z, t, η) = h(z, t, η′) and m(t, ν) = m(t, ν′) ∀z, t

G(η, ν) , G(η′, ν′) if h(z, t, η) , h(z, t, η′) or m(t, ν) , m(t, ν′) for some z, t

Some identifying assumptions are required in order to exploit the information gathered from the
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instrument. The first one is again a monotonicity hypothesis of the instrument with respect to the

treatment:

Assumption PS 12 : Z(0) ≤ Z(1)

which eliminates strata 9 to 12 and can be alternatively stated in terms of the structural model as

follows:

Assumption S M12 : m(0, ν) ≤ m(1, ν) ∀ν.

An additional identifying assumption, concerning the response behavior, is a type of latent ignor-

ability (Frangakis, Rubin 1999):

Assumption PS 13 : Y(0)⊥⊥S (0)|Z(0) = k,Z(1) = h ∀h, k; Y(1)⊥⊥S (1)|Z(0) = k,Z(1) = h ∀h, k.

which states that, within strata defined only by the joint values of the two potential outcomes Z(0)

and Z(1), nonresponse is ignorable.

For model (4), the following condition holds by contruction, ε⊥⊥S |G(η, ν); while latent ignora-

bility can be formalized by defining a type of unit function such that:

G(ν) = G(ν′) if m(t, ν) = m(t, ν′) ∀t

G(ν) , G(ν′) if m(t, ν) , m(t, ν′) for some t

and assuming:

Assumption S M13 : ε⊥⊥S |G(ν).

Assumption PS13 states that, within strata defined only by the two potential values of the instru-

ment Z, the nonresponse mechanism is ignorable, so that, if we could observe both values of Z,

given those values the distribution of Y among respondents and nonrespondents would be the same.

Note that the conditioning that induces independence between outcome and nonresponse is neither

on ν (in the structural setting), nor on the observed values of Z, say Z(ti), but rather on specific

subsets of values of ν, i.e., on the joint values of Z(0) and Z(1).
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Indeed, conditional independence given ν, together with Assumption SM11, would also imply

marginal independence of ε and S , so that Assumption PS13 would correspond to an assumption

of (not latent) ignorable nonresponse, thus removing the motivating complication of nonignorabil-

ity10.

If assumption PS13 holds, we can then concentrate only on the 3 latent strata defined by Z. To

show how these assumptions allow identifiability of a properly defined causal effect, consider the

following equality:

f (Y(1)|Z(1) = 0, S (1) = 1) = f (Y(1)|Z(1) = 0,Z(0) = 0, S (1) = 1)

which holds because Assumption PS12 implies that if Z(1) = 0 then Z(0) = 0. By Assumptions

PS13 and PS11 we also have:

f (Y(1)|Z(1) = 0,Z(0) = 0, S (1) = 1) = f (Y(1)|Z(1) = 0,Z(0) = 0)

= f (Y(1)|Z(1) = 0) = f (Y(1)).

The last two equalities show that respondents with Z(1) = 0 can be used to estimate f (Y(1)).

Analogously, respondents with Z(0) = 1 can be used to estimate f (Y(0)). So, focussing on the

average causal effect, an estimator of E[Y(1) − Y(0)] is the following:

ˆ̄Y(1|Z = 0, S = 1) − ˆ̄Y(0|Z = 1, S = 1).

A numerical example is presented in the Appendix, which shows how the different assumptions

may coexist and how identification is achieved.

6 Empirical illustration

We analyze a small intervention in the form of financial aids to Tuscan small and medium hand-

icraft enterprises. In the framework of the Programs for the Development of Crafts in Tuscany

(Regional Law n. 36, 4/4/95), we consider the effects of interest-relief grants on investments (PSA

10Note that ε⊥⊥S |ν ≡ ε⊥⊥η|ν and Z⊥⊥ε ≡ ν⊥⊥ε; so assuming ε⊥⊥η|ν, together with ν⊥⊥ε, implies ε⊥⊥η (Dawid, 1979).
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2001-2002), delivered in years 2001 and 2002, on turnover in year 2005. Data are obtained by inte-

grating different data sources: administrative archives (ASIA, 2001-2004; IRAP, 2001-2003), data

on firms receiving aids collected by ArtigianCredito, and data from an “ad hoc” survey (Mauro,

Mattei, 2007). The survey was conducted in order to gather additional information on firms

not contained in administrative archives, in particular outcome variables on firms’performances

(turnover, number of employees, production innovation). The survey was designed using propen-

sity score matching (Rubin, 2001), in order to select a sample of firms not receiving aids (controls)

as similar as possible to treated firms. Evidence on the effect of the program on some dimensions

of firms’ performances, not affected by missingness, such as the number of employees, suggests

that the effect is negligible (Mauro, Mattei, 2007). This result is not surprising, given the limited

amount of investments (50000 euros on average) and an interest relief of approximately 5% of the

investment. Turnover might be a variable more sensitive to such an intervention, which is however

affected by a high degree of nonresponse. We consider a subsample consisting of 101 treated firms

and 101 controls: the sample of controls was constructed using nearest neighbor propensity score

matching and resulted in a sample of firms with the same distribution of pre-treatment covariates

as the sample of treated firms. There is some evidence that nonresponse may be nonignorable:

nonresponse is in fact highly correlated with pre-treatment turnover, so we may suspect that it

is the same with post-treatment turnover, even conditional on observed covariates. In order to

estimate the program effect in the presence on nonresponse, we exploit the variable Z, the indica-

tor variable which assumes value 1 if an employee responds to the phone interview and 0 if the

owner responds, as an instrument for nonresponse. In Table 7, the relevant sample quantities are

reported: the chosen instrument does play a role in determining nonresponse, in particular under

control ( p̂(S = 1|T = 0,Z = 1) > p̂(S = 1|T = 0,Z = 0)). Moreover, monotonicity of nonresponse

with respect to both the treatment and the instrument is not contradicted by the data.

The way sample averages ˆ̄Y(T,Z|S = 1) are used to obtain an estimate of some causal effect

depends on the causal estimand and the additional identifying assumptions, in particular those re-

lated to the nonexistence of some strata. In Table 8 we report the estimated strata proportions under

different identifying assumptions. In all the configurations considered, the sample proportions sug-
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ˆ̄Y(T = 0|S = 1) 414078
ˆ̄Y(T = 1|S = 1) 451132

Diff 37054
ˆ̄Y(T = 0,Z = 0|S = 1) 362273
ˆ̄Y(T = 1,Z = 0|S = 1) 416327
ˆ̄Y(T = 0,Z = 1|S = 1) 676554
ˆ̄Y(T = 1,Z = 1|S = 1) 686734

p̂(S = 1|T = 1,Z = 1) 0.722

p̂(S = 1|T = 1,Z = 0) 0.710

p̂(S = 1|T = 0,Z = 1) 0.714

p̂(S = 1|T = 0,Z = 0) 0.628

Table 7: Relevant sample quantities: Y is 2005 turnover in euros, T is the program indicator, Z is

the instrumental variable and S is the response indicator

gest that stratum 4 does not exist or is negligible, while data are consistent with the existence of

strata 2 and 6.

We therefore estimate the average effect in strata G ∈ {8, 16} under the assumptions PS1-PS4,

PS6-PS7, nonexistence of stratum 0011 and Y(0, 0)⊥⊥ S (0, 0)|S (1, 0) = 1, S (0, 1) = 1, S (1, 1) = 1:

ˆ̄Y(1, 0|S = 1) − ˆ̄Y(0, 0|S = 1) = 54054 euros.

The estimated effect must be interpreted as an average effect for the always respondents and for

firms reacting to the instrument under control. It is slightly larger than the effect estimated by

improperly comparing respondents under treatment and under control (Diff in Table 7).

7 Concluding remarks

In this paper we have dealt with the problem of a nonignorable nonresponse on an outcome vari-

able, on which a causal effect of a treatment is of interest. Identification issues have been studied
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π2 = 0 π4 = 0 π6 = 0

π̂1 0.278 0.278 0.273

π̂2 0 0.008 0.013

π̂4 0.008 0 0

π̂6 0.013 0.005 0

π̂8 0.074 0.082 0.086

π̂16 0.628 0.628 0.628

Table 8: Estimated strata proportions under different identifying assumptions

without and with an “instrument” for nonresponse. In the latter case, assumptions that character-

ize the instrument and allow identification of some causal estimands have been proposed, which

are not the standard assumptions used in an IV setting with endogenuous regressors (Angrist et

al., 1996, Abadie, 2003). An empirical analysis based on a real case study is currently being

conducted, which has inspired the simplified evaluation setting considered here as a motivating

example.

Results were derived within the PS framework, where the latent strata are generated by the

primitive potential outcomes. Identification strategies exploit the comparison between observed

groups and latent groups (strata). This comparison can sometimes imply only bounds for treatment

effects (Zhang and Rubin, 2003; Imbens and Rubin, 1997); point identification can instead be

reached by means of assumptions that usually relate to specific behavioral hypotheses about the

strata. Some of such assumptions aim at reducing the number of strata; other hypotheses impose

certain features of the distribution of outcomes within or among strata: these may include various

forms of exclusion restrictions (Mealli et al., 2004), various versions of stochastic dominance

that assume, for example, that the distribution of the outcome in one or more strata stochastically

dominate that of other strata (Zhang and Rubin, 2003; Zhang et al., 2006), and various forms of

ignorability and nonignorability for the selection mechanism (Frangakis and Rubin, 1999).

In an observational setting, most of the assumptions would be conditional on covariates, so that

methods to accomodate covariates are required, because in finite samples it is infeasible to work
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within cells defined by the covariates, in particular if they are continuous. These methods may

include either flexible parametric specifications (Hirano et al., 2000; Grilli and Mealli, 2007) or be

semiparametric as in Abadie et al. (2002), Abadie (2003), and Frolich (2007).

Indeed, identification and efficiency improvements could also be achieved by exploiting co-

variates: plausible behavioral hypotheses within or among groups defined by the values of the

covariates can be translated into restrictions on coefficients within or among strata (Jo, 2002;

Frangakis, 2006). However, the assumptions embedded in a parametric model, derived under PS,

are more explicit, in terms of the behavior of units, than the ones characterizing structural models.

Using PS, whatever the assumptions made, the result of inference is always a causal effect

within one or more strata. An issue that often arises regarding the PS approach is that we cannot

univocally identify the group the causal effect refers to, so we cannot univocally estimate the

individual causal effects. This issue also characterizes the Instrumental Variable literature where,

under certain assumptions, only the effect on specific subpopulations can be identified (Angrist et

al., 1996). Note, however, that the fact that proper causal effects can only be defined and estimated

for latent subgroups of units is a limitation created by the selection mechanism, rather than a

drawback of the framework of principal stratification.

Appendix

In this appendix we propose a numerical example, which illustrates the case presented in Section

5.2; we consider a nonignorable nonresponse mechanism for the outcome and an instrumental

variable that is assumed as an additional post-treatment variable that preceeds nonresponse and

can be added to the other potential outcome variables. Assume that E(Y(1)) = 4 and E(Y(0)) = 3,

so that the estimand AT E is equal to 1; the outcome variable is subject to nonignorable nonre-

ponse, E(Y(1)|S (1) = 1) = 3.84 , E(Y(1)|S (1) = 0) = 4.16 and E(Y(0)|S (0) = 1) = 2.84 ,

E(Y(0)|S (0) = 0) = 3.16. In Table 9 we describe in terms of principal strata a plausible setting

that, under Assumptions 13, 14, 17, and 19, may have generated the figures stated above.

Assumption 17 is verified because Z(0) ≤ Z(1). Assumption 14 holds because E(Y(0)|Z(0) =
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π(Z(0),Z(1)) Z(0) Z(1) π(S (0), S (1)|Z(0),Z(1)) S(0) S(1) Y(0) Y(1)

0.2 0 0 0.25 0 0 1 3

0.25 0 1 1 4

0.25 1 0 2 5

0.25 1 1 0 4

0.4 0 1 0.1 0 0 3.4 0

0.2 0 1 4.8 6

0.3 1 0 2.5 4

0.4 1 1 7 1.5

0.4 1 1 0.4 0 0 3.4 3.5

0.3 0 1 2.8 6

0.2 1 0 5 8

0.1 1 1 1.5 2

Table 9: Principal strata, principal strata proportions and average outcome values

0) = 0.2×1+0.4×4
0.6 = 3 = E(Y(0)|Z(0) = 1), where, e.g., 1 = 0.25× 0 + 0.25× 1 + 0.25× 2 + 0.25× 1 =

E(Y(0)|Z(0) = 0,Z(1) = 0). Analogously, E(Y(1)|Z(1) = 1) = 4 = E(Y(1)|Z(1) = 0). Further, note

that nonresponse rate varies with Z. While nonresponse is nonignorable, latent ignorability (Ass.

19) can be easily verified to hold, e.g., E(Y(1)|S (1) = 0,Z(0) = 0,Z(1) = 0) = 0.25×3+0.25×5
0.5 = 4 =

E(Y(1)|S (1) = 1,Z(0) = 0,Z(1) = 0). Under treatment, using respondents with Z(1) = 0, E(Y(1))

is estimated to be 4, while, under control, using respondents with Z(0) = 1, E(Y(0)) is estimated

to be 3, and so the AT E correctly estimated as 1.
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