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Traditional estimators of fit measures based on the noncentral chi–square distribution (root mean

square error of approximation [RMSEA], Steiger’s ”, etc.) tend to overreject acceptable models

when the sample size is small. To handle this problem, it is proposed to employ Bartlett’s (1950),

Yuan’s (2005), or Swain’s (1975) correction of the maximum likelihood chi–square statistic for the

estimation of noncentrality–based fit measures. In a Monte Carlo study, it is shown that Swain’s

correction especially produces reliable estimates and confidence intervals for different degrees of

model misspecification (RMSEA range: 0.000–0.096) and sample sizes (50, 75, 100, 150, 200). In

the second part of the article, the study is extended to incremental fit indexes (Tucker–Lewis Index,

Comparative Fit Index, etc.). For their small–sample robust estimation, use of Swain’s correction

is recommended only for the target model, not for the independence model. The Swain–corrected

estimators only require a ratio of sample size to estimated parameters of about 2:1 (sometimes

even less) and are thus strongly recommended for applied research. R software is provided for

convenient use.

Despite the prominence of model fit statistics based on the noncentral chi–square distribution

in applied research, there are surprisingly few investigations on their small–sample behavior.

The studies by Curran et al. (2002), Curran et al. (2003), and Hu and Bentler (1999) indicate

that sample size should be at least 200 to achieve robust inference based on the noncentral

chi–square distribution. When sample size is smaller, the population noncentrality parameter

is overestimated with the undesirable consequence that noncentrality–based statistics tend to

overreject acceptable models. This finding was revalidated in a study by Olsson, Foss, and

Breivik (2004). These authors also found that a sample size of 200 is not enough when model
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2 HERZOG AND BOOMSMA

size increases, thereby implicitly highlighting the importance of considering sample size in

relation to model size, as measured, for example, by the number of free parameters (e.g.,

Herzog, Boomsma, & Reinecke, 2007; Nevitt & Hancock, 2004).

Applied researchers, however, often deal with relatively small ratios of sample size to model

size. In dyadic studies (Kenny, Kashy, & Cook, 2006), for example, it is very hard to get large

data sets (e.g., Homburg & Fürst, 2005). Compared to observational studies, sample sizes in

experimental studies are usually also small, which is one of the main reasons experimental

researchers so rarely apply covariance structure methodology (Tomarken & Waller, 2005). The

robustness against small sample size is still one of the most serious challenges in covariance

structure modeling. Irrespective of model size, some applied researchers dare not even think

of using this methodology when the number of observations is less than 200.

Our general objective in this study is to reduce problems associated with small sample sizes

under varying degrees of model misspecification. The more specific aim of the investigation

is twofold. First, we propose employing Bartlett’s (1950), Swain’s (1975), or Yuan’s (2005)

correction of the maximum likelihood chi–square statistic for the computation of noncentrality–

based fit statistics. The primary interest here is the behavior of these corrected estimators

compared to the traditional method when (a) sample size relative to model size decreases, and

(b) the degree of misspecification increases. The goal is to select an estimator that performs

best in approximating a noncentral chi–square distribution across a wide range of sample sizes

and degrees of misspecification. Performance criteria are relative mean bias, relative standard

deviation bias, and coverage rates of confidence intervals for the population noncentrality

parameter. We also illustrate the practical relevance of the findings in the root mean square

error of approximation (RMSEA) metric of the noncentrality parameter. Second, the study

is extended to the independence model in the framework of incremental fit indexes, using

the Tucker–Lewis Index (TLI) as an illustration. In summary, we want to provide applied

researchers with small–sample robust estimators of both noncentrality–based and incremental

population model fit indexes.

The article is structured as follows. First, covariance structure tests based on the central

and the noncentral chi–square distribution are discussed formally, and relevant Monte Carlo

studies are reviewed. Second, modified estimators of noncentrality–based model fit indexes are

introduced with reference to Bartlett (1950), Yuan (2005), and Swain (1975), and expectations

about the small–sample behavior of the statistics under study are formulated. Third, the design

of our Monte Carlo investigation is described and results for noncentrality–based statistics are

presented. In a supplementary analysis, the study is extended to the independence model and

the small–sample robust estimation of incremental model fit indexes. Finally, the results are

illustrated by correcting estimates of noncentrality–based and incremental fit measures reported

in a recently published small–sample study.

CENTRAL CHI–SQUARE DISTRIBUTION

In the following, consider a vector of p random variables z (p � 1) with a corresponding

empirical sample covariance matrix S (p � p) based on N D n C 1 independent observations,

and a population model with covariance structure †.™/ (p � p), where ™ (t � 1) is a vector

of independent model parameters to be estimated. It is well known that, given the sample
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 3

covariance matrix S, the minimization of

FMLŒS; †.™/� D log j†.™/j C trŒS†.™/�1� � log jSj � p (1)

yields the maximum likelihood estimate O™ of ™.

We define †0 as the true population covariance matrix generated by the population model

M0 of the p variables, and †.™j / as the population covariance matrix implied by a postulated

model Mj . The null hypothesis H0 : †0 D †.™j /, that is, the hypothesis that the postulated

model holds exactly in the population, can then be tested against the alternative that †0 is

any positive definite covariance matrix, � say; the alternative hypothesis can be expressed as

H1 : †0 D �. If � � S and H0 holds, the distribution of the likelihood ratio test statistic

TML D nFMLŒS; †. O™j /� (2)

converges to a central chi–square distribution with d D p.p C 1/=2 � t degrees of freedom as

the sample size N increases (Wilks, 1938). The likelihood ratio test statistic can be used to test

whether the proposed model should be rejected at a certain significance level: the so–called

test of exact fit.

It should be noted that the test of exact fit is sensitive to violations of underlying assumptions.

These are mainly independent observations, multivariate normality of the observed variables,

and a large sample size (the functioning of asymptotic theory). If these assumptions are violated,

empirical Type I error rates are typically too large and population models are rejected too

frequently (e.g., Hu, Bentler, & Kano, 1992; Savalei, 2008).

NONCENTRAL CHI–SQUARE DISTRIBUTION

A rather implicit assumption underlying the derivations in the previous section is that a

covariance structure model can in principle hold exactly in the population, as reflected by

H0 : †0 D †.™j /. However, use of a statistical model implies that a researcher is willing

to abstract from reality’s complexity and therefore, every covariance structure model is by

definition only an approximation of reality or, negatively formulated, “wrong” to some degree.

Hence, it seems hardly appropriate to test whether a model holds exactly in the population.

From the perspective that models never fit exactly, it is of far more practical interest to infer to

what degree a model–implied covariance matrix differs from the population covariance matrix.

This issue was raised by Steiger and Lind (1980), refined by Steiger, Shapiro, and Browne

(1985), and elaborated on by Cudeck and Henly (1991) and Browne and Cudeck (1993).

Cudeck and Henly (1991) defined three types of discrepancies or errors (see also Browne &

Cudeck, 1993). Let †0 D †.™0/ denote the true population covariance matrix resulting from

the population or “operating” model M0 (Cudeck & Henly, 1991), which, as argued, never

exactly corresponds to the estimated or postulated model Mj of the researcher. Moreover,

let Q†j D †. Q™j / represent the best fit of the postulated model Mj to †0; that is, Q™j D
arg min F Œ†0; †.™j /�, where F is a discrepancy function as defined by Browne (1984, p. 64).

The so–called error of approximation refers to the lack of fit of model Mj to the population

model M0 by looking at differences between †0 and Q†j in terms of F : F0 D F.†0; Q†j /.
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4 HERZOG AND BOOMSMA

Furthermore, let O†j D †. O™j / represent the best fit of model Mj to the sample covariance

matrix S; that is, O™j D arg min F ŒS; †.™j /�. The error of estimation refers to differences

between Q†j and O†j in terms of F : Fe D F. Q†j ; O†j /.

Finally, the overall error denotes the difference between †0 and O†j in terms of F : Ft D
F.†0; O†j /.

In the remainder of this article, we are only concerned with F D FML; see Equation 1.

Hence, in the sequel, the maximum likelihood (ML) discrepancy function defines the error of

approximation, the error of estimation, and the overall error.

Under the crucial assumption that the error of approximation is small relative to the error

of estimation (in addition to the assumptions concerning the test of exact fit mentioned in the

previous section), it has been shown that TML asymptotically follows a noncentral chi–square

distribution with degrees of freedom d and noncentrality parameter œ D nF0 (Steiger et al.,

1985). A noncentral chi–square variate has an expectation of d C œ and a standard deviation

of
p

2d C 4œ.

The noncentral chi–square distribution explicitly incorporates the amount of substantial

model error in terms of F0 or œ. Since Steiger and Lind’s (1980) seminal presentation to

the Psychometric Society, attention has shifted from “statistical significance” of model error

to “practical significance” of model error. The major drawback with the latter perspective,

however, is that one cannot take refuge in mere significance testing of F0 D 0, which is

equivalent to the test of exact fit. Instead, one has to distinguish carefully between close– and

not–close–fitting models in terms of the error of approximation, F0. For that purpose, Steiger

and Lind (1980) introduced the RMSEA as a metric of F0 or œ, which is defined as the square

rooted error of approximation per degree of freedom:

RMSEA D
r

F0

d
D

r

œ

dn
: (3)

The lower bound of RMSEA is zero because the population noncentrality parameter œ is

nonnegative by definition, but the upper bound of RMSEA is not normed. The division by

degrees of freedom d takes model complexity into account: In more complex models, more

parameters t have to be estimated and, given a fixed number of observed variables p, the

reduced degrees of freedom d result in larger values of RMSEA; that is, in less close model

fit. As a consequence, conditional on the sample data, parsimonious models are favored over

complicated models in RMSEA–based model evaluation. Further, the square root in Equation 3

prevents the occurrence of very small RMSEA values that might be difficult to interpret. In

addition, the square root causes the second–order derivative of RMSEA with respect to F0 or œ

to be negative. Therefore, Equation 3 is more sensitive to changes in the error of approximation

when F0 is small than when it is large. As a result, RMSEA can discriminate between “good”

and “rather good” models but it is less appropriate to discriminate between “bad” and “very

bad” models.

Browne and Cudeck (1993, p. 144) suggested that an RMSEA value of less than 0.05

indicates “close” fit, a value of 0.05 up to 0.08 indicates “reasonable” fit, and that “one would

not want to employ a model with an RMSEA greater than 0.10.” Rules of thumb, however, are

always subject to criticism and should be interpreted with caution and tolerance (e.g., Chen

et al., 2008; Marsh, Hau, & Wen, 2004).
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 5

The noncentrality parameter œ is usually estimated by Oœ D max.TML � d I 0/. As a result,

the population RMSEA is estimated by

RM OSEA D

s

Oœ
dn

: (4)

Because it is known that the sampling distribution of TML matches a noncentral chi–square

distribution under conditions already mentioned, it is possible to estimate confidence limits

for œ and RMSEA. In deriving confidence limits for œ, one usually employs the cumulative

distribution function G.TMLjd; œ/. If one is willing to accept a Type I error probability of

’, then a lower confidence limit for œ can be calculated by solving for OœL in the equation

G.TMLjd; OœL/ D 1 � ’=2. This is a nonlinear numerical problem and any root–finding routine

implemented in statistical software packages will be useful for this purpose. Similarly, it

is possible to obtain the upper confidence limit for œ by solving for OœU in the equation

G.TMLjd; OœU / D ’=2. It should be noted that the estimated confidence limits are in general

not equidistant to the point estimate Oœ. It follows that for every œ

P. OœL < œ < OœU / D 1 � ’; (5)

and it is straightforward that for every RMSEA

P

0

@

s

OœL

dn
< RMSEA <

s

OœU

dn

1

A D 1 � ’: (6)

Note that Equations 5 and 6 also contain information about the test of exact fit, as the test

of exact fit will be significant at error level ’=2 when OœL > 0 (Browne & Cudeck, 1993). For

example, a positive OœL based on a 90% confidence region means that the test of exact fit is

significant at a 5% Type I error level.

The usefulness of the noncentral chi–square distribution for the evaluation of model fit is in

most cases illustrated with reference to the RMSEA metric of œ, although there are many other

interesting fit indexes that are functions of œ, for example Steiger’s ” or McDonald’s Centrality

Index (for a discussion see Hu & Bentler, 1999). In principle, one can also estimate confidence

intervals for corresponding population counterparts of these latter statistics. However, the

RMSEA has clearly received the most attention in applied research, and it has also been

recommended that this statistic be reported in combination with the standardized root mean

square residual (SRMR; Hu & Bentler, 1999). Due to its practical relevance, we also present the

results of our simulation study in the RMSEA metric of the noncentrality parameter. It should

be noted, however, that our findings and recommendations hold for other noncentrality–based

statistics as well (e.g., Steiger’s ”, McDonald’s Centrality Index, etc.).

As indicated, model evaluating inference in covariance structure modeling based on the

central and the noncentral chi–square distribution is exact only asymptotically; that is, if sample

size increases to infinity. Although there are a number of studies on the approximation of the

central chi–square distribution with small sample sizes (e.g., Bentler & Yuan, 1999; Boomsma,
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6 HERZOG AND BOOMSMA

1983; Fouladi, 2000; Nevitt & Hancock, 2004), there is very limited empirical research on the

small–sample behavior of noncentral chi–square statistics in covariance structure modeling.

The main message of these few studies is that noncentrality–based fit statistics, and especially

RMŜEA, tend to overreject acceptable models when sample size is small, say N � 200 (Curran

et al., 2003; Hu & Bentler, 1999). This is because mean and variance of the noncentral chi–

square distribution are overestimated when small samples are analyzed (Curran et al., 2002;

Olsson et al., 2004).

Furthermore, the studies by Curran et al. (2003) and Olsson et al. (2004) confirm that

the overestimation of mean and variance of the noncentral chi–square distribution leads to

a decreased coverage rate when confidence intervals for œ and RMSEA are estimated using

Equations 5 and 6, respectively.

It is also worth noting that Olsson et al. (2004) found that the approximation of the noncentral

chi–square distribution breaks down with increasing model size. As a result, sample size

recommendations relative to model size might be of advantage, for example, in terms of N:t

ratios. As mentioned earlier, however, although rules of thumb, like N:t ratios, might provide

sensible guidelines for applied researchers in many situations, they should always be employed

with abundant vigilance and leniency (e.g., Brown, 2006; Jackson, 2001, 2003, 2007).

Large N:t ratios are rather rare in applied research. At the outset of this article, it was

emphasized that in particular experimental and dyadic studies are often based on small sample

sizes. In the next section, we introduce alternative estimators of noncentrality–based population

model fit that are supposed to work even under very small N:t ratios, without losing the

described asymptotic properties.

SMALL–SAMPLE CORRECTIONS

In the following, three corrective procedures are introduced that are known to improve the

small–sample performance of TML under the assumption that H0 holds; that is, they are designed

to robustify the test of exact fit against small sample sizes. Although, to our knowledge,

nothing is known about their performance under model misspecification, it is rather intuitive to

employ these corrections in the noncentral case as well (see, e.g., Steiger et al., 1985). We first

introduce Bartlett’s (1950), Yuan’s (2005), and Swain’s (1975) correction for the test of exact

fit. Expectations about the performance of the statistics under study in the noncentral case are

formulated next.

Bartlett–Corrected Statistics

For the test of exact fit of exploratory factor models, Bartlett (1937, 1950, 1954) developed a

small–sample correction of TML. Fouladi (2000) and Nevitt and Hancock (2004) proposed to

employ Bartlett’s correction for general covariance structure models as well. Bartlett suggested

to multiply TML by

b D 1 � 4k C 2p C 5

6n
(7)
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 7

which results in a new test statistic

TMLb � bTML: (8)

Equation 7 is a function of the number of latent variables k, the number of observed variables

p, and the sample size N D n C 1, and it was derived by expansion of a moment generating

function (Bartlett, 1950, Equation 3). It follows from Equations 7 and 8 that asymptotically

the sampling distribution of the Bartlett–corrected statistic matches that of TML. However, TMLb

more closely follows a chi–square distribution when N is small (Fouladi, 2000; Herzog et al.,

2007; Nevitt & Hancock, 2004).

Yuan–Corrected Statistics

As we have emphasized, the Bartlett–correction (Equation 8) is the appropriate small–sample

correction for exploratory or unrestricted factor models only. For the test of general covariance

structures, Wakaki, Eguchi, and Fujikoshi (1990) developed a Bartlett–like correction that

seems to improve the performance of TML for arbitrary covariance structure models (Kensuke,

Takahiro, & Kazuo, 2005). Unfortunately, this correction procedure is quite complicated, even

for small models; therefore, Yuan (2005) recommended the “ad hoc correction”

TMLy � yTML; (9)

with a modification of the Bartlett correction factor (Equation 7) to

y D 1 � 2k C 2p C 7

6n
: (10)

Yuan (2005) argued that an exploratory factor model is identical to a confirmatory factor

model when the number of latent variables k equals one. In this case, the Bartlett correction

factor (Equation 7) is appropriate and y D b. In general for k > 1, the exploratory factor model

has more factor loadings to be estimated compared to a “usual” covariance structure model

with a factor complexity of one (i.e., every measured variable is related to only one factor).

As a result, the Bartlett factor in Equation 7 is based on a too–large number of parameters to

be estimated when a usual covariance structure model is tested. In Equation 7, k is the only

variable that takes into account the number of parameters. Without giving a detailed derivation,

Yuan (2005) proposed to employ the constant 2 instead of 4 as a multiplication factor of k in

his ad hoc correction of TML. As a result, every additional latent variable does not decrease the

correction factor by @b
@k

D � 2
3n

, as for Bartlett’s case, but by
@y

@k
D � 1

3n
, thereby taking into

account that usually fewer parameters are estimated in “ordinary” covariance structure models

compared to exploratory factor models.

In general, b < y, and thus TMLb < TMLy as long as k > 1. However, from Equations 10

and 7, it is obvious that TMLb and TMLy should perform quite similarly.
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8 HERZOG AND BOOMSMA

Swain–Corrected Statistics

Swain (1975) derived four small–sample corrections of TML for general covariance structure

models. In our study, only the most promising of these four will be considered; see also Browne

(1982). Unlike Yuan (2005), who used the k–factor Bartlett correction as a starting point and

argued that there are too many parameters t considered in Bartlett’s original scaling factor

when general covariance structure models are analyzed, Swain (1975) used the test of a fixed

covariance structure as a starting point with t D 0 and d D p.p C 1/=2. For that situation,

the appropriate scaling factor is also known (Bartlett, 1954, section IIIa), and Swain proposed

several ways to consider that t > 0 in general covariance structure models. According to Swain

(1975, pp. 78–82), the most promising small–sample correction factor of TML is defined as

s D 1 � p.2p2 C 3p � 1/ � q.2q2 C 3q � 1/

12dn
; (11)

where

q D
p

1 C 4p.p C 1/ � 8d � 1

2
; (12)

with p observed variables, d degrees of freedom, and N D n C 1 observations. The Swain

correction of the test statistic TML is defined as

TMLs � sTML: (13)

Noncentral Case

Remember that the three corrective procedures already presented are not designed for the

case of model misspecification and therefore, it is not clear whether they also result in a better

approximation of a noncentral chi–square distribution when H0 : †0 D †.™j / does not hold. In

earlier research (Steiger et al., 1985), however, Bartlett’s statistic was applied for the evaluation

of misspecified models without any comment in this matter.

To check whether the rather intuitive application of multiplicative corrections of TML is

legitimate, the behavior of TML, TMLb, TMLy, and TMLs is studied under different sample size

conditions and different degrees of model misspecification in the remainder of this article.

More specifically, empirical means and standard deviations of these model fit statistics are

compared to the theoretical moments of the noncentral chi–square distribution. Coverage rates

of estimated confidence intervals for F0 or œ resulting from these four statistics are also

investigated. Finally, the results are illustrated in the RMSEA metric of F0 or œ. For these

purposes we define

Oœb D TMLb � d; Oœy D TMLy � d; Oœs D TMLs � d; (14)

and

RM OSEAb D

s

Oœb

dn
; RM OSEAy D

s

Oœy

dn
; RM OSEAs D

s

Oœs

dn
: (15)
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 9

Expectations

What are our expectations regarding the small–sample performance of the statistics under

study? In accordance with the results of previous studies, we first expect for small sample

sizes (in particular for N < 200) that both mean value and standard deviation of TML are too

large, resulting in too liberal estimates of œ (i.e., œ being overestimated) and in coverage rates

below nominal values (cf. Curran et al., 2003; Curran et al., 2002; Olsson et al., 2004).

Second, all corrective procedures are expected to give less liberal estimates of œ compared

to the traditional procedure because all correction factors are smaller than one for finite sample

sizes. In some cases, they might even be too conservative (i.e., œ being underestimated). It is

therefore hard to predict whether the corrections under study are less biased compared to TML.

Third, as discussed earlier, it is clear that Bartlett’s procedure is more conservative than

Yuan’s procedure as long as k > 1, but the difference between the two correction factors

is quite small. From the results of earlier empirical studies, it can further be concluded that

Swain’s procedure is the least corrective and thus the least conservative statistic of all corrective

procedures (Fouladi, 2000; Herzog et al., 2007). Hence, it is expected that TMLb < TMLy <

TMLs < TML, and that mean values and standard deviations are the smallest for TMLb and

the largest for TML. It is not clear though, which statistic will have the best approximation

to a noncentral chi–square distribution. Furthermore, it is not straightforward which statistic

produces the best estimates of œ, RMSEA, and the corresponding confidence intervals. The

only hint in the literature is that TMLb might be a bit too conservative, or to be more specific,

the moments of the corresponding noncentral chi–square distribution might be underestimated

when sample sizes are small and F0 is rather large (Steiger et al., 1985). It is therefore possible

that TMLy and TMLs perform better than TMLb and TML for small N:t ratios.

Finally, it is known that mean and standard deviation bias of TML slightly reduce with

increasing F0 (Curran et al., 2003; Curran et al., 2002). However, when F0 increases much, the

standard deviation bias inflates extremely but the mean bias seems unaffected (Curran et al.,

2002; Olsson et al., 2004). These tendencies are expected for all statistics under study.

Unfortunately, to our knowledge, no more background information is available—neither

from asymptotic theory nor from previous Monte Carlo studies—that could help to formulate

more specific expectations. The following simulation work is designed to provide more insights

into the small–sample behavior of the statistics under study.

MONTE CARLO DESIGN

Sample Size Conditions

Data sets with sample sizes of 50, 75, 100, 150, and 200 were generated to analyze the small–

sample behavior of the statistics under investigation.

Population Model and Misspecifications

The population model M0 is depicted in Figure 1. It is a confirmatory factor model with four

latent factors and 24 observed variables. Solid arrows represent regular loadings of 0.70, dashed
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10 HERZOG AND BOOMSMA

FIGURE 1 Population model M0 .

arrows denote cross–loadings of 0.35, and curved double–sided arrows stand for correlations

among latent factors of 0.30. Variances of the latent factors were fixed to the value of 1. These

population values were selected in accordance with a similar model generated by Curran, West,

and Finch (1996) and Nevitt and Hancock (2001). As usual, error variances were determined

so that all observed variable variances equal 1 (e.g., Olsson, Foss, Troye, & Howell, 2000).

That is, the error variances were fixed to 0.2405 for x6; x7; x12; x13; x18; and x19, and to 0.5100

in all other cases.

For all sample size conditions, five models (M0–M4) were analyzed with an increasing

degree of misspecification, as indicated by population values of RMSEA ranging from 0.000

up to 0.096 (for details see Table 1). This range was selected because it represents the variety

of RMSEA values usually reported in applied studies. The value of 0.000 reflects perfect model

fit, and a value close to 0.100 indicates very poor model fit that might be acceptable only under

very specific conditions (e.g., as in the case of Homburg & Fürst, 2005).

TABLE 1

Overview of Models in the Monte Carlo Design

Model t d F0 RMSEA TLI Model Error

M0 60 240 0.000 0.000 1.000 None

M1 59 241 0.241 0.032 0.978 Ÿ4 ! x18 omitted

M2 58 242 0.480 0.045 0.956 Ÿ4 ! x18 and Ÿ3 ! x19 omitted

M3 54 246 1.349 0.074 0.877 All cross–loadings omitted

M4 54 246 2.264 0.096 0.794 All cross–loadings omitted, but:

Ÿ1 loads on x7 , but Ÿ2 does not;

Ÿ2 loads on x13 , but Ÿ3 does not;

Ÿ3 loads on x19 , but Ÿ4 does not

M5 24 276 12.330 0.211 0.000 Independence model

Note. RMSEA D root mean square error of approximation; TLI D Tucker–Lewis Index.
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 11

Estimators of Model Fit

The third main factor in this study crossing the 25 sample size � model specification conditions

is the model fit estimator with four levels: TML, TMLb, TMLy, and TMLs. As a result, the

experimental setup of the Monte Carlo study is a 5�5�4 factorial design with 100 conditions.

The response variables are described in the performance criteria section.

Data Generation and Model Estimation

Samples of size N were generated from a (24–variate) multinormal distribution with covariance

structure †.™0/ resulting from the population model M0 (see Table 1 and Figure 1). Both

generation of the sample data and estimation of the models was performed by using the Mplus

software program (Version 4.2; Muthén & Muthén, 2007). The seed values for the pseudo–

random sample draws from the multivariate normal population distribution for the five sample

size conditions were 71398311 .N D 50/, 48781591 .N D 75/, 39528719 .N D 100/,

09187419 .N D 150/, and 61846648 .N D 200/.

The starting values for the model parameter estimates were set to their population values,

and factor variances were fixed to 1.00 for reasons of identification. The factor models were

estimated using the primary maximum likelihood estimation setting (ML) in Mplus. For

statistical analyses of the generated model estimates, R software (Version 2.4.1) was used;

see, for example, Venables, Smith, and the R Development Core Team (2006).

Number of Replications

For each of the five sample size conditions, 10,000 data sets were generated from population

model M0 shown in Figure 1. Following Olsson et al. (2004), Curran et al. (2002), and Curran

et al. (2003), additional data were generated for the rare cases in which improper solutions

occurred (a maximum rate of 1.86% for model M3 with N D 50). There were no problems

with convergence during the iterative estimation process, which might be due to the large

number of indicators per factor that has been shown to reduce problems with nonconvergence

and improper solutions (Boomsma, 1985; Marsh et al., 1998).

Performance Criteria

A number of performance criteria are important when evaluating the finite–sample behavior of

the model test statistics under study.

First, the relative mean bias (i.e., the mean of a statistic computed across all replications

divided by its asymptotically predicted mean), the relative standard deviation bias (i.e., the

standard deviation of a statistic computed across all replications divided by its asymptotically

predicted standard deviation), and the coverage rates of the estimated confidence intervals for

œ are studied. Across all replications, the coverage rate should be equal to 1 � ’, and in our

study we investigate the widely applied case where 1 � ’ D 0:90. Due to the large number of

replications, we did not employ significance tests for the deviations of empirical means, standard

deviations, and coverage rates from their asymptotically predicted values. From the derivations

of Steiger et al. (1985), it is clear that for every F0 > 0, no test statistic will exactly follow
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12 HERZOG AND BOOMSMA

a noncentral chi–square distribution. This also holds for the finite–sample case: Asymptotic

theory predicts that for N < 1, test statistics will not follow a central or a noncentral chi–

square distribution exactly. Thus, significance of deviations from theoretical values mainly

depends on the number of replications. In this study, the primary objective therefore is to

determine the practical significance of the deviations. The number of replications was set to

10,000 to get estimates of these deviations close to the population deviations. Concordant with

Curran et al. (2002), acceptable values of relative mean bias and relative standard deviation

bias are defined by the range [0.95, 1.05]. Similarly, acceptable coverage rates are defined

by values between 0.88 and 0.92 for a 90% confidence interval (Curran et al., 2003). In the

tables with the summarized results (see next section), acceptable relative mean biases, relative

standard deviation biases, and coverage rates are printed in boldface.

Second, means and standard deviations of RMSEA estimators are reported to illustrate the

practical relevance of our findings in this widely applied metric of the noncentrality parameter.

We also report on the root mean squared error (RMSE) of the four RMSEA estimators (see

Equations 4 and 15). The RMSE of an estimator equals the square rooted sum of its squared

bias and its variance. For each cross–condition of sample size � degree of misspecification,

the best performing RMSEA estimate (i.e., the one with the lowest RMSE) is highlighted

by printing mean, standard deviation, and RMSE in boldface. When two or more RMSEA

estimators have the lowest RMSE (equal to the third decimal place), mean, standard deviation,

and RMSE of these estimators are printed in boldface.

RESULTS

In Tables 2 through 5, the results for TML, TMLb, TMLy, and TMLs are reported in terms of the

performance criteria described in the previous section.

Traditional Estimator

For TML, the relative mean bias reduces with increasing sample size and increasing degree of

misspecification, as expected. Both findings cross–validate results reported by Curran et al.

(2002). The mean of TML across the 10,000 replications is 30% larger compared to its expected

value for RMSEA D 0 and N D 50; even for N D 150 and N D 200, the mean of TML is

larger than its theoretical value. The relative standard deviation bias reduces with increasing

sample size. It also decreases with increasing misspecification but this tendency is weaker and

occasionally not monotone when N increases. The coverage rates associated with the traditional

estimation method are not acceptable for any condition under study. In particular for RMSEA

D 0 and N D 50, only 11% instead of 90% of the confidence intervals cover œ, which is quite

an alarming result for applied researchers.

In RMSEA metric, the results show that the traditional method is too liberal, with the

apparent consequence that acceptable models estimated with small sample sizes are rejected too

frequently. The standard deviation of RMŜEA decreases monotone with increasing sample size

and increasing misspecification. RMŜEA is among the best estimators compared to the other

three estimators (RMŜEAb , RMŜEAy , and RMŜEAs) in terms of RMSE only for N D 150

and N D 200.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
G
r
o
n
i
n
g
e
n
]
 
A
t
:
 
1
5
:
3
7
 
2
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 13

TABLE 2

Performance of TML

Sample Size

RMSEA

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

Relative mean biasa

0.000 1.30 1.18 1.12 1.08 1.06

0.032 1.28 1.17 1.11 1.07 1.05

0.045 1.27 1.15 1.10 1.05 1.03

0.074 1.23 1.12 1.08 1.04 1.02

0.096 1.20 1.11 1.06 1.03 1.02

Relative standard deviation biasb

0.000 1.32 1.17 1.12 1.07 1.05

0.032 1.29 1.16 1.10 1.05 1.04

0.045 1.27 1.15 1.09 1.05 1.05

0.074 1.22 1.12 1.08 1.05 1.05

0.096 1.21 1.14 1.11 1.09 1.09

Coverage rate for œ (90% confidence interval)c

0.000 0.11 0.43 0.62 0.78 0.84

0.032 0.13 0.46 0.66 0.81 0.85

0.045 0.16 0.51 0.71 0.83 0.86

0.074 0.22 0.61 0.74 0.85 0.87

0.096 0.29 0.65 0.77 0.84 0.86

M (SD) [root mean squared error] of RMŜEAd

0.000 0.076 0.046 0.032 0.020 0.015

(0.017) (0.017) (0.016) (0.014) (0.012)

[0.078] [0.049] [0.036] [0.024] [0.019]

0.032 0.083 0.056 0.046 0.037 0.035

(0.016) (0.015) (0.013) (0.011) (0.009)

[0.053] [0.029] [0.019] [0.012] [0.009]

0.045 0.088 0.064 0.055 0.049 0.047

(0.015) (0.013) (0.011) (0.009) (0.007)

[0.046] [0.024] [0.016] [0.010] [0.007]

0.074 0.106 0.088 0.081 0.077 0.075

(0.013) (0.011) (0.009) (0.007) (0.006)

[0.035] [0.017] [0.011] [0.007] [0.006]

0.096 0.123 0.107 0.102 0.098 0.097

(0.013) (0.010) (0.008) (0.006) (0.005)

[0.030] [0.015] [0.010] [0.007] [0.006]

Note. RMSEA D root mean square error of approximation.
aValues in the range [0.95, 1.05] are defined as acceptable and printed in boldface. bValues

in the range [0.95, 1.05] are defined as acceptable and printed in boldface. cValues in the range

[0.88, 0.92] are defined as acceptable and printed in boldface. dFor each RMSEA � sample

size condition, mean values .M/ are printed without parentheses, standard deviations .SD/ in

parentheses, and root mean squared errors in brackets. For each RMSEA � sample size condition,

these three values are printed in boldface when no other estimator reported in Tables 3 through

5 has a smaller root mean squared error.
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14 HERZOG AND BOOMSMA

TABLE 3

Performance of TMLb

Sample Size

RMSEA

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

Relative mean biasa

0.000 0.99 0.99 0.99 0.99 1.00

0.032 0.98 0.98 0.98 0.98 0.99

0.045 0.97 0.97 0.97 0.97 0.97

0.074 0.94 0.95 0.95 0.96 0.96

0.096 0.92 0.93 0.94 0.95 0.96

Relative standard deviation biasb

0.000 1.00 0.99 0.99 0.99 0.99

0.032 0.99 0.98 0.97 0.97 0.98

0.045 0.97 0.97 0.96 0.97 0.99

0.074 0.94 0.94 0.96 0.97 1.00

0.096 0.92 0.96 0.98 1.00 1.02

Coverage rate for œ (90% confidence interval)c

0.000 0.90 0.90 0.90 0.90 0.90

0.032 0.89 0.90 0.90 0.90 0.90

0.045 0.88 0.89 0.89 0.89 0.89

0.074 0.84 0.84 0.85 0.86 0.86

0.096 0.76 0.79 0.80 0.82 0.83

M (SD) [root mean squared error] of RMŜEAb
d

0.000 0.016 0.013 0.011 0.009 0.008

(0.020) (0.017) (0.014) (0.012) (0.010)

[0.026] [0.021] [0.018] [0.015] [0.013]

0.032 0.024 0.025 0.025 0.027 0.029

(0.023) (0.019) (0.017) (0.013) (0.010)

[0.024] [0.020] [0.018] [0.014] [0.011]

0.045 0.032 0.036 0.038 0.041 0.042

(0.024) (0.019) (0.015) (0.010) (0.008)

[0.027] [0.021] [0.016] [0.011] [0.008]

0.074 0.060 0.066 0.068 0.070 0.071

(0.020) (0.012) (0.009) (0.007) (0.006)

[0.024] [0.015] [0.011] [0.008] [0.006]

0.096 0.081 0.087 0.089 0.092 0.093

(0.015) (0.010) (0.008) (0.006) (0.005)

[0.021] [0.014] [0.011] [0.008] [0.006]

Note. RMSEA D root mean square error of approximation.
aValues in the range [0.95, 1.05] are defined as acceptable and printed in boldface. bValues

in the range [0.95, 1.05] are defined as acceptable and printed in boldface. cValues in the

range [0.88, 0.92] are defined as acceptable and printed in boldface. dFor each RMSEA �

sample size condition, mean values .M/ are printed without parentheses, standard deviations

.SD/ in parentheses, and root mean squared errors in brackets. For each RMSEA � sample

size condition, these three values are printed in boldface when no other estimator reported in

Tables 2, 4, and 5 has a smaller root mean squared error.
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 15

TABLE 4

Performance of TMLy

Sample Size

RMSEA

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

Relative mean biasa

0.000 1.02 1.01 1.00 1.00 1.00

0.032 1.01 1.00 0.99 0.99 0.99

0.045 1.00 0.99 0.98 0.98 0.98

0.074 0.97 0.96 0.96 0.97 0.97

0.096 0.94 0.95 0.95 0.96 0.97

Relative standard deviation biasb

0.000 1.03 1.01 1.01 1.01 0.99

0.032 1.01 0.99 0.98 0.98 0.99

0.045 1.00 0.99 0.97 0.98 0.99

0.074 0.96 0.96 0.97 0.98 1.00

0.096 0.95 0.98 0.99 1.01 1.03

Coverage rate for œ (90% confidence interval)c

0.000 0.89 0.90 0.90 0.90 0.90

0.032 0.89 0.90 0.90 0.89 0.90

0.045 0.90 0.90 0.90 0.89 0.89

0.074 0.89 0.87 0.87 0.87 0.87

0.096 0.83 0.83 0.83 0.84 0.85

M (SD) [root mean squared error] of RMŜEAy
d

0.000 0.022 0.016 0.013 0.010 0.009

(0.022) (0.018) (0.015) (0.012) (0.010)

[0.031] [0.024] [0.020] [0.016] [0.014]

0.032 0.031 0.028 0.027 0.028 0.029

(0.024) (0.019) (0.017) (0.013) (0.010)

[0.024] [0.020] [0.017] [0.013] [0.010]

0.045 0.039 0.039 0.040 0.041 0.042

(0.024) (0.018) (0.015) (0.010) (0.007)

[0.024] [0.019] [0.015] [0.010] [0.008]

0.074 0.065 0.068 0.069 0.071 0.072

(0.018) (0.012) (0.009) (0.007) (0.006)

[0.020] [0.013] [0.010] [0.008] [0.006]

0.096 0.086 0.089 0.091 0.092 0.093

(0.014) (0.010) (0.008) (0.006) (0.005)

[0.018] [0.012] [0.010] [0.007] [0.006]

Note. RMSEA D root mean square error of approximation.
aValues in the range [0.95, 1.05] are defined as acceptable and printed in boldface. bValues

in the range [0.95, 1.05] are defined as acceptable and printed in boldface. cValues in the

range [0.88, 0.92] are defined as acceptable and printed in boldface. dFor each RMSEA �

sample size condition, mean values .M/ are printed without parentheses, standard deviations

.SD/ in parentheses, and root mean squared errors in brackets. For each RMSEA � sample

size condition, these three values are printed in boldface when no other estimator reported in

Tables 2, 3, and 5 has a smaller root mean squared error.
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16 HERZOG AND BOOMSMA

TABLE 5

Performance of TMLs

Sample Size

RMSEA

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

Relative mean biasa

0.000 1.06 1.03 1.02 1.01 1.01

0.032 1.05 1.01 1.01 1.00 1.00

0.045 1.03 1.00 1.00 0.99 0.99

0.074 1.00 0.98 0.98 0.98 0.98

0.096 0.98 0.97 0.97 0.97 0.97

Relative standard deviation biasb

0.000 1.07 1.03 1.02 1.01 1.00

0.032 1.05 1.01 1.00 0.99 0.99

0.045 1.04 1.01 0.99 0.99 1.00

0.074 1.00 0.98 0.98 0.99 1.01

0.096 0.99 1.00 1.01 1.02 1.04

Coverage rate for œ (90% confidence interval)c

0.000 0.83 0.88 0.89 0.90 0.90

0.032 0.86 0.90 0.90 0.90 0.90

0.045 0.88 0.90 0.90 0.90 0.90

0.074 0.90 0.90 0.89 0.89 0.88

0.096 0.89 0.88 0.88 0.88 0.88

M (SD) [root mean squared error] of RMŜEAs
d

0.000 0.031 0.020 0.015 0.011 0.010

(0.024) (0.019) (0.016) (0.012) (0.011)

[0.039] [0.027] [0.022] [0.017] [0.014]

0.032 0.040 0.032 0.030 0.029 0.030

(0.024) (0.019) (0.016) (0.012) (0.010)

[0.025] [0.019] [0.017] [0.013] [0.010]

0.045 0.048 0.043 0.042 0.042 0.043

(0.023) (0.018) (0.014) (0.010) (0.007)

[0.023] [0.018] [0.014] [0.010] [0.008]

0.074 0.073 0.071 0.071 0.072 0.072

(0.017) (0.012) (0.009) (0.007) (0.006)

[0.017] [0.012] [0.010] [0.007] [0.006]

0.096 0.092 0.092 0.092 0.093 0.094

(0.014) (0.010) (0.008) (0.006) (0.005)

[0.014] [0.011] [0.009] [0.007] [0.006]

Note. RMSEA D root mean square error of approximation.
aValues in the range [0.95, 1.05] are defined as acceptable and printed in boldface. bValues

in the range [0.95, 1.05] are defined as acceptable and printed in boldface. cValues in the

range [0.88, 0.92] are defined as acceptable and printed in boldface. dFor each RMSEA �

sample size condition, mean values .M/ are printed without parentheses, standard deviations

.SD/ in parentheses, and root mean squared errors in brackets. For each RMSEA � sample

size condition, these three values are printed in boldface when no other estimator reported in

Tables 2 through 4 has a smaller root mean squared error.
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SMALL–SAMPLE ROBUST ESTIMATORS OF MODEL FIT 17

In summary, the results for TML revalidate findings of Curran et al. (2002), Curran et al.

(2003), Olsson et al. (2004), and Hu and Bentler (1999): Traditional estimators of noncentrality–

based population model fit like RMŜEA should not be applied when the sample size is small

.N � 200/.

Bartlett’s Estimator

In contrast to TML, the relative mean bias of TMLb seems to be quite stable with increasing

sample size. However, it decreases with the degree of misspecification. More specifically, the

mean of TMLb is lower compared to its population counterpart when misspecification increases,

and especially with small sample sizes. This result is consistent with findings of Steiger et al.

(1985). TMLb performs much better compared to TML in terms of relative mean bias, especially

for the population model M0, where RMSEA D 0. The relative standard deviation bias is

rather stable when sample size increases. Like for the mean, the standard deviation of TMLb

underestimates its population value with increasing misspecification, particularly for small

sample sizes. The coverage rates are much better compared to those based on TML, but they

clearly decrease below the nominal 90% coverage of œ when misspecification increases.

The estimator RMŜEAb has the smallest RMSE when RMSEA D 0. This result, however,

should not be interpreted in favor of TMLb: A correction factor of 0 would have been the best

option for RMSEA D 0, because the lower bound of œ is constrained to zero. TMLb is the most

conservative correction and therefore TMLb is by definition the best statistic when RMSEA D 0.

For RMSEA > 0, however, RMŜEAb clearly underestimates the population value when N is

small; that is, under realistic conditions .F0 > 0/ Bartlett’s procedure is too conservative. This

undesirable tendency increases with the degree of misspecification and therefore, the power of

RMŜEAb to reject an unacceptable model is clearly lower compared to that of RMŜEA.

In summary, the performance of TMLb is better compared to TML, but this advantage is clearly

at the cost of decreased power to reject unacceptable models, especially when the sample size

is small. This result is in accordance with findings of decreased power of TMLb in Nevitt and

Hancock’s (2004) study. It is further consistent with results reported by Herzog et al. (2007),

who observed that TMLb underestimates Type I error rates when N:t decreases. We consider

this property of TMLb as problematic, hence we hesitate to recommend this statistic for applied

research.

Yuan’s Estimator

As expected, the behavior of TMLy is very similar to that of TMLb. The relative mean bias

is quite stable with increasing sample size. Although the performance of TMLy is somewhat

better than that of TMLb, with increasing misspecification there is still a trend to underestimate

the population mean when N is small. The standard deviation of TMLy is somewhat closer

to the expected value compared to TMLb. However, as for TMLb, the coverage rates for TMLy

are acceptable for minor misspecifications only and become inadequate with increasing model

misspecification.

As for RMŜEAb , RMŜEAy has the drawback that population values are underestimated

for small sample sizes and increasing misspecification. As a result, its power to reject an

unacceptable model is lower compared to the traditional estimator RMŜEA when the sample
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18 HERZOG AND BOOMSMA

size is small. RMŜEAy is the estimator with the smallest RMSE among the four estimators

under study in 7 out of 25 conditions.

In summary, the performance of TMLy is somewhat better compared to that of TMLb, but

there is not too much of a difference. We are of the opinion that more empirical work on this

estimator is required before applied researchers should be advised to use it.

Swain’s Estimator

Compared to TML, the relative mean and standard deviation bias of TMLs is quite stable across

all sample size conditions. A main result is that, compared to TMLb and TMLy, TMLs gives a good

approximation of the corresponding noncentral chi–square distributions in terms of mean and

standard deviation, even when the degree of misspecification increases. This result is reflected

in nearly perfect coverage rates as long as N is at least 75.

The estimates RMŜEAs are close to the corresponding population values across all sample

size and model specification conditions. In particular, RMŜEAs does not underestimate the

population values severely when N is small and thus does not suffer from reduced power to

reject unacceptable models in such situations. As a result, RMŜEAs is the estimator with the

smallest RMSE in 16 out of 25 conditions in our Monte Carlo design.

Conclusion

TML is much too liberal when N is small and therefore, acceptable models are rejected too

frequently. In contrast, TMLb and TMLy follow noncentral chi–square distributions more closely

for minor model misspecifications, but they tend to suffer from decreased power to reject

misspecified models. TMLs, on the other hand, does not reject models too frequently when

small samples are analyzed (unlike TML), and it has enough power to reject misspecified

models (unlike TMLb and TMLy). TMLs is clearly the most stable statistic across all sample size

conditions and degrees of specification error under study. Its use is therefore recommended for

applied research when model inference is based on the noncentral chi–square distribution and

functions of the noncentrality parameter are used to evaluate model fit. It is emphasized again

that our findings and recommendations not only hold for RMSEA estimation, but also for the

estimation of other noncentrality–based fit indexes (e.g., Steiger’s ”, McDonald’s Centrality

Index, etc.).

SUPPLEMENTARY ANALYSIS: INCREMENTAL FIT INDEXES

The results presented so far lead to the recommendation to use the Swain–corrected statistic

TMLs instead of TML for inferences based on the noncentral chi–square distribution when sample

size is small. Our findings, however, are not informative regarding incremental fit indexes—

another family of chi–square–dependent fit indexes, most often reported in combination with

noncentrality–based fit statistics. Because incremental fit indexes are functions of chi–square

measures of model fit, the question under study is whether they also need corrections when

sample size is small.
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Definitions

Incremental fit indexes were developed to quantify the increment of fit of a hypothesized model

Mj relative to a baseline model. The choice of the baseline model is not indisputable (see e.g.,

Sobel & Bohrnstedt, 1985). Most, if not all, software packages, however, take the so–called

independence model, Mi , as the baseline, a model where only variances of the (supposedly

uncorrelated) observed variables are estimated. Given that the chi–square value of the target

model Mj should be Swain–corrected (see previous section), it is unclear now whether one

should also use Swain’s correction factor for the chi–square value of the independence model

Mi .

The Tucker–Lewis Index (TLI), for example, is defined as (Gerbing & Anderson, 1993,

p. 56; McDonald & Marsh, 1990, Equations 7 and 18)

TLI D Fi =di � Fj =dj

Fi =di

; (16)

where Fj and Fi are the errors of approximation of the target model and the independence

model, respectively, and dj and di are the corresponding degrees of freedom. The value of

TLI equals zero when the target model fits as bad as the independence model. For Fj D 0,

TLI equals one, but sample fluctuations may allow estimates of TLI to be larger than one in

some cases. TLI can be estimated by

T OLI D Ti =di � Tj =dj

Ti =di � 1
; (17)

where Ti and Tj are the likelihood ratio test statistics for the independence model Mi and the

target model Mj , respectively, with corresponding degrees of freedom di and dj .

We extend our study presented so far to the independence model to investigate whether

Swain’s correction also improves the small–sample behavior of Equation 17. Two options

are considered. The first option is to correct only the target model fit statistic leading to the

estimator

T OLIs1 D Ti =di � sj Tj =dj

Ti =di � 1
; (18)

with sj being Swain’s correction factor for the target model Mj . The second option is to correct

both the target and the independence model fit statistic, resulting in the estimator

T OLIs2 D siTi =di � sj Tj =dj

siTi =di � 1
; (19)

where si is Swain’s correction factor for the independence model Mi .

Expectations

The specification of the independence model in the simulation study was presented earlier

in Table 1 (see model M5). The study by Curran et al. (2002) revealed that the mean of

Ti corresponds closely to the expected value of a noncentral chi–square distribution, but the
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variance of Ti is inflated severely, so that confidence intervals for the noncentrality parameter œ

are in general not trustworthy. Based on this finding, we expect that it is better not to compute

the Swain correction of Ti because this would result in an empirical mean smaller than the

expected value of the corresponding noncentral chi–square distribution. The standard deviation

of Ti and coverage rates based on Ti are expected to be unreliable with or without Swain’s

correction.

Results and Conclusions

The results for the independence model are summarized in Table 6. They are in accordance

with our expectations.

Our findings are further illustrated in TLI metric (Tables 7 through 9). As before, for every

cross–condition of sample size � model specification, mean values, standard deviations, and

RMSEs are printed in boldface for the estimator having the smallest RMSE among the three

estimators under study (TL̂I, TL̂Is1, and TL̂Is2). When two or more TLI estimators have the

smallest RMSE (equal to the third decimal place), mean, standard deviation, and RMSE of

these estimators are printed in boldface.

The traditional estimator TL̂I performs best in terms of RMSE in only 1 out of 25 conditions.

It underestimates the population value for small sample sizes. Both TL̂Is1 and TL̂Is2 perform

much better, but the advantage in terms of RMSE is clearly on the side of TL̂Is1, as expected.

Based on these results, we recommend correcting only the target model fit statistic using

Swain’s multiplier when population values of incremental fit indexes are estimated—the fit

statistic of the independence model should not be corrected. Hence, TL̂Is1 should be applied in

practice. Again, it should be noted that our recommendations not only hold for the estimation

of TLI, but also for the estimation of other incremental fit indexes like CFI.

TABLE 6

Results for Independence Model

Sample Size

Statistic

N D 50

N:t � 2.1

N D 75

N:t � 3.1

N D 100

N:t � 4.2

N D 150

N:t � 6.3

N D 200

N:t � 8.3

Relative mean biasa

TML 1.10 1.04 1.03 1.02 1.01

TMLs 0.91 0.92 0.94 0.95 0.96

Relative standard deviation biasb

TML 2.26 2.32 2.35 2.33 2.36

TMLs 1.54 1.82 1.96 2.07 2.16

Coverage rate for œ (90% confidence interval)c

TML 0.51 0.67 0.70 0.71 0.71

TMLs 0.53 0.55 0.57 0.60 0.63

aValues in the range [0.95, 1.05] are defined as acceptable and printed in boldface. bValues

in the range [0.95, 1.05] are defined as acceptable and printed in boldface. cValues in the range

[0.88, 0.92] are defined as acceptable and printed in boldface.
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TABLE 7

Performance of TOLI

Sample Size

TLI

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

M (SD) [root mean squared error]

1.000 0.881 0.950 0.973 0.989 0.994

(0.046) (0.030) (0.022) (0.014) (0.011)

[0.128] [0.059] [0.035] [0.018] [0.012]

0.978 0.862 0.928 0.951 0.967 0.972

(0.047) (0.031) (0.024) (0.016) (0.012)

[0.125] [0.058] [0.035] [0.019] [0.014]

0.956 0.844 0.909 0.931 0.946 0.951

(0.047) (0.033) (0.025) (0.017) (0.014)

[0.122] [0.057] [0.035] [0.020] [0.015]

0.877 0.776 0.835 0.855 0.868 0.873

(0.050) (0.036) (0.029) (0.021) (0.018)

[0.113] [0.056] [0.036] [0.023] [0.018]

0.794 0.701 0.754 0.773 0.785 0.789

(0.054) (0.042) (0.034) (0.026) (0.022)

[0.107] [0.058] [0.041] [0.028] [0.023]

Note. TLI D Tucker–Lewis Index. For each TLI � sample size condition, mean values

.M/ are printed without parentheses, standard deviations .SD/ in parentheses, and root mean

squared errors in brackets. For each TLI � sample size condition, these three values are printed

in boldface when no other estimator reported in Tables 8 and 9 has a smaller root mean squared

error.

ILLUSTRATION

To illustrate the relevance of our findings for applied research under conditions of small sample

sizes, we corrected noncentrality–based fit statistics and incremental fit indexes of a covariance

structure model analyzed by Obermiller, Spangenberg, and MacLachlan (2005, Figure 2). The

model was specified with p D 25 and d D 265, and it was estimated with an extremely small

sample size of N D 54. In Table 3, the authors further reported that TML D 398:291, RMŜEA

D 0.097, and CF̂I D 0.838 (for a definition of the CFI, see Hu & Bentler, 1999, Table 1). The

authors concluded that their “model does not fit the data well, which merely suggests that the

model is underspecified” (p. 14). The question now is whether the authors would have reached

another conclusion if they had applied our Swain–corrected estimators of noncentrality–based

and incremental model fit measures.

Given the described model specification and the sample size, Swain’s scaling factor equals

0.819, hence test statistic TMLs D 326:240. The resulting Swain–corrected point estimate

RMŜEAs D 0.066 with a 90% confidence interval [0.037, 0.089] is substantially smaller

compared to the traditional estimate RMŜEA D 0.097 with a confidence interval [0.077, 0.117].
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TABLE 8

Performance of TOLIs1

Sample Size

TLI

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

M (SD) [root mean squared error]

1.000 0.978 0.992 0.996 0.999 0.999

(0.039) (0.027) (0.021) (0.014) (0.010)

[0.045] [0.028] [0.021] [0.014] [0.010]

0.978 0.963 0.973 0.976 0.978 0.978

(0.039) (0.028) (0.022) (0.015) (0.012)

[0.042] [0.028] [0.022] [0.015] [0.012]

0.956 0.948 0.955 0.958 0.959 0.958

(0.040) (0.029) (0.023) (0.016) (0.013)

[0.041] [0.029] [0.023] [0.017] [0.013]

0.877 0.892 0.890 0.889 0.886 0.884

(0.041) (0.032) (0.026) (0.020) (0.017)

[0.044] [0.034] [0.029] [0.022] [0.018]

0.794 0.831 0.820 0.814 0.807 0.804

(0.044) (0.037) (0.031) (0.025) (0.021)

[0.057] [0.045] [0.037] [0.028] [0.023]

Note. TLI D Tucker–Lewis Index. For each TLI � sample size condition, mean values

.M/ are printed without parentheses, standard deviations .SD/ in parentheses, and root

mean squared errors in brackets. For each TLI � sample size condition, these three values

are printed in boldface when no other estimator reported in Tables 7 and 9 has a smaller root

mean squared error.

As pointed out earlier, our corrections are not limited to RMSEA estimation and can be applied

for all noncentrality–based fit statistics. Given the reported values for TML and the number of

observed variables p, the traditional estimate of Steiger’s ” (cf. Hu & Bentler, 1999), for

example, equals 0.833 with a 90% confidence interval [0.776, 0.888], but the Swain–corrected

estimate for this statistic equals 0.915 with a confidence interval [0.856, 0.971], suggesting a

much better model fit compared to the traditional estimate.

For the calculation of TL̂I, which was not reported by Obermiller et al. (2005), we de-

rived the test statistic for the independence model, Ti D 1122:784, from their reported

estimate CF̂I D 0.838. It follows that TL̂I D 0.817, but the Swain–corrected estimate TL̂Is1

D 0.916 hints at a much better population model fit. A similar conclusion is reached when

comparing the traditional estimate CF̂I D 0.838 with the Swain–corrected estimate CF̂Is1 D
0.926.

The model size of Obermiller et al. (2005) is comparable to the simulated population model

size in our study and their sample size is close to our smallest sample size condition. From the

performance of the Swain–corrected estimators in Tables 5 and 8, the corrected estimates are

expected to be much closer to the population values than the traditional estimates reported by
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TABLE 9

Performance of TOLIs2

Sample Size

TLI

N D 50

N:t � 0.9

N D 75

N:t � 1.3

N D 100

N:t � 1.7

N D 150

N:t � 2.6

N D 200

N:t � 3.4

M (SD) [root mean squared error]

1.000 0.971 0.990 0.996 0.998 0.999

(0.052) (0.032) (0.023) (0.015) (0.011)

[0.060] [0.034] [0.024] [0.015] [0.011]

0.978 0.951 0.968 0.973 0.976 0.977

(0.052) (0.033) (0.024) (0.016) (0.012)

[0.059] [0.035] [0.025] [0.016] [0.012]

0.956 0.931 0.947 0.953 0.955 0.956

(0.053) (0.034) (0.026) (0.018) (0.014)

[0.058] [0.036] [0.026] [0.018] [0.014]

0.877 0.856 0.870 0.875 0.877 0.878

(0.054) (0.038) (0.030) (0.022) (0.018)

[0.060] [0.038] [0.030] [0.022] [0.018]

0.794 0.772 0.786 0.790 0.793 0.793

(0.059) (0.043) (0.035) (0.027) (0.022)

[0.063] [0.044] [0.035] [0.027] [0.022]

Note. TLI D Tucker–Lewis Index. For each TLI � sample size condition, mean values

.M/ are printed without parentheses, standard deviations .SD/ in parentheses, and root

mean squared errors in brackets. For each TLI � sample size condition, these three values

are printed in boldface when no other estimator reported in Tables 7 and 8 has a smaller root

mean squared error.

Obermiller et al. (2005). The Swain–corrected estimates of the discussed fit indexes suggest a

rather acceptable (albeit not very good) model fit.

For a recent application of our proposed Swain–corrected fit measures see Morhart, Herzog,

and Tomczak (in press).

SOFTWARE

For convenient calculation of the proposed corrections in applied research, the R function swain

is provided at http://www.gmw.rug.nl/�boomsma along with documentation (Boomsma &

Herzog, 2007). The function uses the chi–square statistic of the target model TML, the chi–square

statistic of the independence model Ti , sample size N , degrees of freedom d , and the number

of variables p as input variables (these values are obtained from the output of any standard

software package like Amos, EQS, LISREL, or Mplus) and calculates both uncorrected and

the proposed Swain–corrected estimates of noncentrality–based statistics (including confidence

intervals) and incremental fit indexes.
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GENERAL DISCUSSION

Summary and Recommendations

“Structural equation modeling software does not work with small sample sizes.” In our opinion,

this is a quite broadly established conviction among applied scientists. The results of this

study, however, should encourage applied scientists to use covariance structure methodology

even when rather small sample sizes are available and appropriate corrections of model fit

estimators are applied.

For misspecified models, Swain’s (1975) correction of TML closely follows a noncentral

chi–square distribution for realistically sized models (in this study, 24 variables) and a sample

size of N D 75. This corresponds to an N:t ratio of about 1.3:1, which is very promising for

researchers dealing with small sample sizes because ratios of 5:1 have been recommended in

earlier studies (Bentler & Chou, 1987). The study by Herzog et al. (2007), however, reveals that

ratios of less than 2:1 should not be applied for larger models (even when Swain’s correction

is used). In summary, applied researchers dealing with N:t ratios close to 2:1 are on the safe

side although smaller N:t ratios might be used for smaller models. Notice, once more, that this

recommendation should be interpreted with great caution because the behavior of parameter

and standard error estimators has not been investigated in this study. Although it is known that

estimates of parameters and standard errors are robust for small to medium sample sizes under

conditions of multivariate normality (e.g., Gerbing & Anderson, 1985), research about possible

corrections of parameter and standard error estimators is needed before one should go beyond

the “2:1 border.”

Our supplementary analysis reveals that only the chi–square value of the target model, not

that of the independence model, should be corrected by Swain’s multiplier in estimators of

population incremental fit indexes. Applied researchers with N:t ratios of 2:1 are on the safe

side when Swain–corrected estimators of incremental fit indexes are applied.

Finally, it should be noted that Swain’s multiplier converges to 1 when the sample size

increases. Therefore, it should do no harm to use Swain’s multiplier in general (independent

of sample size). To do so, the R function swain is available for the convenient calculation of

the proposed Swain–corrected estimators in applied research (Boomsma & Herzog, 2007).

Limitations and Research Opportunities

A few prospects for further research can be enumerated. First, nonnormality has an inflating

effect on chi–square model fit statistics (cf. Boomsma, 1983), which also affects functionally

related fit measures like RMSEA or TLI estimators. It would be interesting to investigate

whether certain corrective procedures, such as Satorra and Bentler’s (1994) scaling correction,

in combination with Swain’s multiplier would robustify TML against both small sample size

and nonnormality for varying degrees of misspecification.

Second, this study was restricted to confirmatory factor models. Generalization of our

findings to a variety of common model structures would be desirable. However, confirmatory

factor models are used extensively in applied research, and it should be noted that no relevant

differences compared to full covariance structure models were observed in earlier investigations

of chi–square statistics (e.g., Nevitt & Hancock, 2004).
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Third, our analysis did not deal with the small–sample robust point and interval estimation

of parameters. It is known, however, that chi–square differences based on TML can be used to

estimate confidence intervals for parameters and test the significance of parameter estimates

(Cheung, 2007; Neale & Miller, 1997). It might be promising to investigate whether confidence

intervals and significance tests based on Swain–corrected chi–square differences perform well

under conditions of small sample sizes.

Finally, noncentrality–based and incremental fit indexes are frequently used to test for

measurement invariance in multiple–group analyses (e.g., Chen, 2007). It might be interesting

to generalize our proposed estimators to multiple–group structural equation modeling and to

compare their behavior with that of traditional estimators when sample size is small.
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