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According to Kenny and McCoach (2003), chi-square tests of structural equation

models produce inflated Type I error rates when the degrees of freedom increase.

So far, the amount of this bias in large models has not been quantified. In a Monte

Carlo study of confirmatory factor models with a range of 48 to 960 degrees of

freedom it was found that the traditional maximum likelihood ratio statistic, TML,

overestimates nominal Type I error rates up to 70% under conditions of multivariate

normality. Some alternative statistics for the correction of model-size effects were

also investigated: the scaled Satorra–Bentler statistic, TSC ; the adjusted Satorra–

Bentler statistic, TAD (Satorra & Bentler, 1988, 1994); corresponding Bartlett

corrections, TMLb , TSCb , and TADb (Bartlett, 1950); and corresponding Swain

corrections, TMLs , TSCs , and TADs (Swain, 1975). The empirical findings in-

dicate that the model test statistic TMLs should be applied when large structural

equation models are analyzed and the observed variables have (approximately) a

multivariate normal distribution.

In the practice of structural equation modeling (SEM) one can observe that an

increasing number of large models are estimated; that is, models with lots of

indicators and latent variables, and consequently in most cases many degrees of

Correspondence should be addressed to Walter Herzog, Institute of Marketing and Retailing,

Dufourstrasse 40a, CH-9000 St. Gallen, Switzerland. E-mail: walter.herzog@unisg.ch

361



362 HERZOG, BOOMSMA, AND REINECKE

freedom. This may raise a number of problems. First, it is not always possible

and it is often too expensive to get large sample sizes needed to estimate such

big models. Second, the distribution of the large number of observed variables

involved can rarely be approximated by a multivariate normal density. Third, the

combination of large models, relatively small sample sizes, and nonnormal data

appears to be accountable for the inflated Type I error rates of the traditional

maximum likelihood ratio test statistic, TML, for global model fit (see, e.g.,

Hoogland, 1999). The apparent consequence—which can be verified from the

literature—is that in applied SEM, researchers increasingly rely on alternative

fit measures rather than TML. Decisions and conclusions regarding model fit

are frequently based on more popular statistics and fit indexes, applying partly

subjective cutoff criteria. A brief outline of the goals of our study follows.

It is argued that the effect of model size, measured by the number of degrees

of freedom d (cf. Kenny & McCoach, 2003), and its interaction with sample

size requires more attention in applied research, because (a) the model-size effect

makes investigators more reluctant to report p values of model fit statistics in

their studies—even if of no single use—and (b) other popular statistics (e.g.,

the Tucker–Lewis index [TLI], and the root mean square error of approximation

[RMSEA]) are affected by the inflated values of TML as well. Because relatively

little is known about the effects of model size on familiar model test statistics,

the first aim of our study is to quantify the impact of large model size on the

finite sampling distribution of TML in SEM. In general, for the evaluation of

model-size effects on model test statistics Type I error rates are of specific,

although not of single importance.

Although not very obvious at first glance, a family of chi-square corrections

introduced by Satorra and Bentler (1988, 1994) might be one promising approach

to handle the model-size effect. Two of them are the scaled (mean-corrected)

statistic, TSC , and the adjusted (mean- and variance-corrected) statistic, TAD

(Satorra & Bentler, 1994, p. 407f), based on theoretical work by Bartlett (1937)

and Satterthwaite (1941), respectively, and a classical paper by Box (1954). It

is well known that these corrections have first and foremost been developed to

make TML robust against effects of nonnormality. It should be noted, however,

that Satorra and Bentler (2001) suggested (in their abstract) that their corrections

might also work for small samples and large models, relative to distribution-free

estimation methods, that is. In addition, the studies by Fouladi (2000) and Nevitt

and Hancock (2004) provided empirical evidence that, relative to TML, these

corrections might also improve small-sample performance even when the nor-

mality assumption is not violated at all. As large models need large sample sizes

for the asymptotic properties of test statistics to hold (Muthén, 1993, p. 228), it

is reasonable to assume that these statistics will also perform well in large mod-

els. Unfortunately, little is known about the finite-sample behavior of TSC and

TAD in large models and about the interaction of sample-size and model-size
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effects. Therefore, our second aim is to check whether it is beneficial (focusing

on Type I error rates as well as on complete distribution functions) to favor

TSC or TAD over TML for the test of large models even under conditions of

multivariate normality. In this study we do not consider analyses of nonnormal

data because, as a baseline, a detailed investigation of the effect of increas-

ing d under the normality assumption is needed first. Once more, we included

the Satorra–Bentler statistics in our research design, not because of their well-

known performance for the nonnormal case (e.g., Hu, Bentler, & Kano, 1992),

but because they seem to be promising for correcting model-size effects under

normality conditions as well.

Another straightforward approach to attack the problem of model size is to

compute the corresponding Bartlett corrections of the three model fit statistics,

TMLb , TSCb , and TADb, as proposed by Fouladi (2000) and more recently by

Nevitt and Hancock (2004). Although Bartlett (1950) developed his type of

corrections for exploratory factor modeling, these researchers found an accept-

able performance under conditions of small sample size for general SEM as

well. Because of the dependency of sample-size requirements on model size,

as mentioned earlier, it is expected that these corrections might also work in

large models. Because their behavior in large models is not precisely known,

it is investigated whether these statistics turn out to be adequate corrections of

model-size effects. Hence, our third aim is to investigate the Type I error rates

produced by TMLb, TSCb , and TADb , and to compare them to those of TML,

TSC , and TAD, respectively, in large models under conditions of multivariate

normality.

A less well-known correction of TML has been developed by Swain (1975).

According to Browne (1982), this approach “seem[s] to result in an improvement

of the approximation of the chi-squared distribution” (p. 98). With the exception

of the Monte Carlo study by Fouladi (2000), to our knowledge the finite-sample

behavior of this statistic is undocumented. Fouladi found a good performance

of the statistic, especially for small sample sizes. For similar reasons as for the

Bartlett corrections, it could be claimed that the corresponding Swain corrections

TMLs , TSCs , and TADs might yield better Type I error rates compared to those

of TML, TSC , and TAD. Therefore, the fourth aim of this study is to investigate

the performance of the Swain corrections in large models under multivariate

normality.

In summary, the purpose of our study is (a) to investigate the bias in Type I

error rates produced by TML; (b) to compare the results of TML with those

of TSC and TAD; (c) to evaluate the performance of TMLb , TSCb, and TADb;

and (d) to check whether the behavior of TMLs , TSCs , and TADs is appropriate

for testing covariance structure models with many degrees of freedom when

multivariate normality assumptions hold.
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Before we turn to the next section, it is emphasized that a careful investigation

of TML, TSC , and TAD in large models was demanded by several researchers

(e.g., Hoogland, 1999; Kenny & McCoach, 2003; Muthén, 1993, p. 228; Muthén

& Satorra, 1995). To our present knowledge, no systematic Monte Carlo study

of the behavior of chi-square statistics in very large models exists, although

the investigation of such models “will probably result in findings that are more

disappointing regarding the chi-square statistic” (Hoogland, 1999, p. 51). As

indicated before, an exception is a study on some fit measures (RMSEA, TLI, and

the comparative fit index [CFI]) by Kenny and McCoach (2003). Two remarks

on this first investigation of the behavior of fit statistics in large models can

be made. First, the study aimed at two measures (CFI and TLI) with rather

subjective cutoff criteria for model fit evaluation, not at the regular chi-square

statistic for overall model fit. Second, in applied research, model decision criteria

for the RMSEA are mainly based on practical experience (Browne & Cudeck,

1992, p. 239), which is not undisputable: Jöreskog (2005) favored a p value for

the test of close fit associated with the RMSEA of at least 0.50.

The article is structured as follows. First, the test statistics under study are

defined and the corresponding asymptotic theory is presented briefly. Second,

research hypotheses are developed based on findings of previous simulation

studies; that is, expectations regarding the behavior of the test statistics under

study are formulated. Third, based on results from a Monte Carlo research

design, the expectations are tested and consequences for applied research are

deduced. The practical implications of our findings are further exemplified by

correcting the fit of a large structural equation model that was published recently.

Finally, some limitations of this study and directions of future research are briefly

mentioned.

TEST STATISTICS AND THEIR ASYMPTOTIC

DISTRIBUTION

In this section, all test statistics under study are defined and the asymptotic

theory underlying their distribution is summarized.

Likelihood Ratio Statistic

Consider p random variables z .p � 1/ with an empirical sample covariance

matrix S .p � p/ based on N D n C 1 independent observations, and a pop-

ulation model of underlying relations among these variables with covariance

structure †.™/ .p � p/, where ™ .t � 1/ is the vector of independent model

parameters to be estimated. If the observed variables z follow a multivariate

normal distribution, the sample covariance matrix S based on independently and
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identically distributed observations has a Wishart distribution (Anderson, 1958).

The maximization of the corresponding log-likelihood function, conditional on

the sample covariance matrix S, is equivalent to minimizing the function

FMLŒS; †.™/� D log j†.™/j C tr ŒS†.™/�1� � log jSj � p; (1)

which is a discrepancy function as defined by Browne (1984, p. 64); log de-

notes the natural logarithm here. The parameter vector O™, defining the minimum

of FMLŒS; †.™/�, contains the so-called maximum likelihood estimates of ™.

Asymptotically, as N goes to infinity, the maximum likelihood estimates are

normally distributed with expectation vector E. O™/ D ™, and asymptotic covari-

ance matrix acov. O™, O™0

/ D I�1.™/, the inverted Fisher information matrix of

order .t � t/, which can be estimated (cf. Bollen, 1989, p. 109), yielding esti-

mates of the standard errors of the t parameter estimates as well as estimated

covariances between those parameter estimates.

Let † .p � p/ denote the population covariance matrix of the p observed

variables z, †.™j / the population covariance matrix implied by a postulated

model Mj , and let c be an “irrelevant constant” (Bollen, 1989, p. 263). One can

then test the null hypothesis H0 W † D †.™0/; that is, that the postulated model

holds, with the corresponding log-likelihood function, evaluated at ™0 D O™0,

log L0 D log LŒ†. O™0/I S� D �n

2
flog j†. O™0/j C tr ŒS†�1. O™0/�g C log c; (2)

against the alternative hypothesis H1 W † D �, where � is any positive definite

matrix, and by definition n D N � 1. If � is set equal to the sample covariance

matrix S, it follows that the log-likelihood function under H1 can be written as

log L1 D log L.�I S/ D �n

2
Œlog jSj C tr .SS

�1/� C log c (3)

D �n

2
.log jSj C p/ C log c

(for details, see, e.g., Anderson, 1958; Bollen, 1989, p. 263ff.). It can then be

shown that under H0, the distribution of the likelihood ratio statistic, defined as

TML � �2 log
L0

L1

D �2 log
LŒ†. O™0/I S�

L.�I S/
D nFMLŒS; †. O™0/�; (4)

converges with increasing sample size N D n C 1 to a chi-square distribution

with d D p.p C1/=2� t degrees of freedom (Wilks, 1938); the likelihood crite-

rion œ D L0=L1 in Equation 4 was introduced by Neyman and Pearson (1928).

From Equations 1 and 4 it follows that the likelihood ratio test statistic, TML,
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is by definition n times the minimum of the maximum likelihood discrepancy

function evaluated at ™0 D O™0. Hence, the likelihood ratio test statistic can be

used to test whether the proposed model †.™0/ is implausible at a given level

of significance. In practice, the behavior of this statistic depends, of course,

on its robustness against violations of underlying assumptions (independent ob-

servations, multivariate normality with covariance structure †.™0/, and a large

sample size, mainly).

Satorra–Bentler Statistics

Because nonnormal data are very common in practice, Satorra and Bentler (1988,

1994) introduced two corrections to a family of model test statistics, aimed

to yield distributional behavior that more closely follows the chi-square refer-

ence distribution that is used in structural equation model testing. Relative to

distribution-free methods, these statistics can be useful when the sample size is

small or the estimated model is large (Satorra & Bentler, 2001, p. 507). The

corrections can, in principle, be applied to a family of test statistics, including

the normal theory weighted least square model test statistic, TWLSN
, as it is

used in the LISREL program (see Jöreskog, Sörbom, Du Toit, & Du Toit, 2001,

Appendix A). In this study, we only apply it to TML.

The mean-corrected, scaled statistic (Satorra & Bentler, 1988, 1994, p. 407)

is defined as

TSC � d

tr.A/
TML; (5)

where matrix A is a slightly complicated function of a matrix of first-order

derivatives of the ML-discrepancy function to the parameters to be estimated

and an estimate of the asymptotic covariance matrix of sample covariances

(cf. Muthén, 2004, Equation 105). If the distribution of z is elliptical, the scal-

ing factor d=tr.A/ in Equation 5 provides an estimate of the common relative

kurtosis of z (Satorra & Bentler, 1994, p. 407), which implies a correction for

nonnormality.

As usual, the test statistic TSC is evaluated as having (approximately) a chi-

square distribution with d D p.p C 1/=2 � t degrees of freedom. For certain

distributions of the observed variables, for example, elliptical ones, the asymp-

totic distribution of TSC is exactly chi-square with d degrees of freedom. In

principle, however, the correction of TML involves a scaling to the correct mean,

so that for general distributions asymptotically the first moment of the distribu-

tion of TSC is matched to the number of degrees of freedom d . Under conditions

of multivariate normality, TSC has asymptotically an exact chi-square distribu-

tion with d degrees of freedom, because a multivariate normal density is also

elliptical.
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Furthermore, Satorra and Bentler (1988, 1994, p. 408) used a procedure

developed by Satterthwaite (1941, 1946) to correct not only for the mean but

for the variance of TML as well. This is possible by an adjustment of the number

of degrees of freedom to d 0, which is the integer closest to a function of the

matrix A (cf. Muthén, 2004, Equation 110): by definition

d 0 D int

�

Œtr.A/�2

tr.A2/

�

: (6)

It should be noted that the value of d 0 may vary from sample to sample. Sub-

stituting d 0 for d in Equation 5, we get (cf. Muthén, 2004, Equation 108):

TAD � d 0

tr.A/
TML; (7)

which is the adjusted chi-square test statistic; adjusted for mean and variance

that is.

Again, for general distributions of observed variables, TAD has asymptotically

not an exact chi-square distribution with d 0 degrees of freedom, but it matches

the first- and second-order moment of that distribution (Satorra & Bentler, 1994,

p. 408). For multivariate normal observations, TAD has asymptotically an exact

chi-square distribution with d 0 degrees of freedom.

It should be stressed that if distributional assumptions or conditions for

asymptotic robustness hold, both corrections of TML discussed in this sec-

tion are “automatically inactive (asymptotically)” (Satorra & Bentler, 1994,

p. 414). Notice, however, the adverb in parentheses: asymptotically. It has to

be reemphasized, that TML also follows a chi-square distribution only asymp-

totically.

Bartlett-Corrected Statistics

For exploratory factor analysis models (more specifically, for principal compo-

nents models) Bartlett (1950, 1954) developed a correction of the chi-square

test statistic for small sample sizes. In general, Bartlett’s correction consists of

multiplying �2 log œ D n FMLŒS; †. O™0/�, where œ is the likelihood ratio crite-

rion of Neyman and Pearson (1928), by a scale factor that results in a statistic

having the same moments as ¦2, ignoring quantities of order n�2 (cf. Lawley,

1956). As pointed out by Lawley (1956), this scaling device was first employed

by Bartlett (1937).

From Equation 9, it can be seen that Bartlett’s correction for unrestricted

factor models is a function of the number of latent variables k, the number
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of observed variables p, and the sample size N D n C 1. Fouladi (2000) and

Nevitt and Hancock (2004) studied the Bartlett correction for the analysis of

general structural equation models, and applied it to the three model test statistics

discussed so far, TML, TSC , and TAD. The corresponding Bartlett corrections

for these statistics are defined as

TMLb � b TML ; TSCb � b TSC ; and TADb � b TAD; (8)

respectively, where

b D 1 � 4k C 2p C 5

6n
: (9)

It follows from Equations 8 and 9 that asymptotically the distribution of

the Bartlett-corrected statistics matches the asymptotic distributions of TML,

TSC , and TAD, respectively. The specific form of Equation 9 was derived by

Bartlett (1950, Equation 3) from expansion of a moment generating function.

Independently, Box (1949) derived approximations of chi-square statistics for

tests on correlation matrices identical to those of Bartlett.

Swain-Corrected Statistics

As we have emphasized, the Bartlett correction in Equation 9 is the appropri-

ate small-sample correction for exploratory or unrestricted factor models only.

For general covariance structure models, Bartlett’s correction is strictly speaking

not appropriate. In fact, for each class of models a specific multiplier or cor-

rection factor would be needed. Because this is quite troublesome for applied

researchers, Swain (1975) developed four small-sample corrections of TML for

general covariance structure models. We only study the one that seemed most

promising among those four; see also Browne (1982, p. 98), who claimed that

Swain used “heuristic arguments” in proposing these correction factors. It should

be noted in advance that Swain (1975) is very cautious about the applicability of

the corrections he proposed: “For any particular model the worth of the forms

suggested [correction factors of the form 1 � k1=n C O.n�2/, where k1 is a

function of p and d ] would, of course, have to be carefully evaluated before

routine application” (p. 78).

From their basic derivations it is clear that both Bartlett and Swain corrections

should be considered as multiplying or scale factors of nFMLŒS; †. O™0/�, not as

multipliers of just the discrepancy function FMLŒS; †. O™0/�. Hence, it would be

improper to suggest that these corrections can or should be interpreted as a

modification of just the sample size.
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For the special case of maximum likelihood estimation of structural equation

models that are invariant under a constant scaling factor (cf. Browne, 1982,

p. 77), the most promising small-sample correction of TML introduced by Swain

(1975) is defined as

s D 1 � p.2p2 C 3p � 1/ � q.2q2 C 3q � 1/

12dn
; (10)

where

q D
p

1 C 4p.p C 1/ � 8d � 1

2
; (11)

p is the number of observed variables, d is the number of degrees of freedom,

and N D n C 1 is the sample size, as before. Equations 10 and 11 correspond

to Swain’s (1975) Equations 4.14 and 4.10. The Swain corrections for the three

test statistics TML, TSC , and TAD are now, respectively, defined as

TMLs � s TML ; TSCs � s TSC ; and TADs � s TAD: (12)

From Equation 10 it can be seen that Swain’s correction is a function of p,

d , and N . Because d D p.pC1/=2�t , Equations 10 and 11 can also be written

as a function of t instead of d , along with p and N , of course (cf. Browne,

1982, p. 98).

It follows from Equations 10 and 12 that asymptotically the distributions of

the Swain-corrected statistics match those of TML, TSC , and TAD, respectively.

EXPECTATIONS OF FINITE SAMPLE BEHAVIOR

In this section we discuss the expected finite sample performance of the nine

statistics for global model fit in large models, TML, TSC , TAD , TMLb , TSCb ,

TADb , TMLs , TSCs , and TADs , as defined previously. Statistical theory does not

yield clear guidelines as to the choice among these statistics, nor does it help

unequivocally to come up with proper, theory-based expectations about the issue

under investigation (cf. Bentler & Yuan, 1999). In our case, the design of the

study has two main factors, model size and sample size: The number of latent

variables in the factor models ranges from 4 to 16, with three indicators for each

latent variable, and the sample sizes are 200, 400, and 800 (details of the design

are reported in the next section). In general it can be expected that the behavior

of the model test statistics will improve with increasing sample size (consis-

tent estimators, the functioning of asymptotic theory) for any given model size.
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Generally, it is also expected that the statistics will show improved behavior with

decreasing model size for a given sample size. There exists empirical evidence

and arguments for this claim. First, the results of a meta-analysis by Hoogland

(1999, section 3.3) show that the performance of the chi-square model statistics

improves with a decreasing number of degrees of freedom d . Second, there are

several rules of thumb in the literature indicating that one might need a specific

minimal number of observations for each observed variable or for each model

parameter to be estimated. Such recommendations suggest that if the number of

observed or latent variables increases, more observations are needed to obtain

proper estimates. As to the comparison of the test statistics under study, statis-

tical theory is not providing solid predictions for their finite sample behavior,

but in most cases it is possible to contrive expectations about the results of our

investigations from the findings of previous simulation studies.

Likelihood Ratio Statistic

Under conditions of multivariate normality, for test statistic TML Hoogland

(1999) found a trend to an overrejection of true models for N < 400, and

this tendency increased as models got larger. This finding is supported by other

simulation studies with various designs (Curran, Bollen, Paxton, Kirby, & Chen,

2002; Hau & Marsh, 2004; Kenny & McCoach, 2003; Marsh, Hau, Balla, &

Grayson, 1998). We therefore expect that the empirical rejection rates will be

inflated more or less seriously for very large models.

Scaled Satorra–Bentler Statistic

The studies by Hu, Bentler, and Kano (1992), Curran, West, and Finch (1996),

Bentler and Yuan (1999), Hoogland (1999), Nevitt and Hancock (2001), and

Hau and Marsh (2004) revealed that the test statistic TSC produces even higher

rejection rates than TML when multivariate normal variables are analyzed, and

this liberal tendency increased with model size as well. Therefore, we expect that

TSC will perform worse than TML in large models under conditions of normality.

The explanation for this expected tendency could very well be that TSC requires

the estimation of the asymptotic covariance matrix of sample covariances, which

involves estimation of fourth-order moments and the computation of the inverse

of often huge matrices.

Adjusted Satorra–Bentler Statistic

There is not a great deal of information about the finite sample behavior of TAD

in the literature. In a recent Monte Carlo investigation, Asparouhov (2005) found
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the adjusted chi-square statistic to have excellent Type I error rates compared

to TML and TSC . Fouladi (2000) conducted an extensive simulation study with

12 different test statistics and found TAD to outperform all other statistics with

respect to Type I error rate “under more general nonnormal distributional con-

ditions" (p. 400; cf. p. 371, Table 1). She concluded that TAD “shows the most

rapid convergence to the nominal level and as such can be used with smaller

samples than the other procedures” (p. 401). We therefore expect that TAD will

outperform TML and TSC in large models.

Bartlett-Corrected Statistics

Fouladi (1999, 2000) and Nevitt and Hancock (2004) examined the performance

of Bartlett corrections in the context of SEM. The results of Nevitt and Hancock,

in particular, indicate that TMLb , TSCb , and TADb tend to underestimate the

nominal levels when N decreases and when d increases. Based on this finding,

it is reasonable to expect that the Bartlett corrections will clearly underestimate

the nominal error levels, when the model to be analyzed is larger than the

models studied by Nevitt and Hancock (2004), which ranged between d D 85

and d D 196.

Swain-Corrected Statistics

To our knowledge, the only study on the Swain correction is the Monte Carlo

investigation by Fouladi (2000). For the analysis of covariance structures, she

found that “the normal theory procedures with the best small sample Type I

error control under conditions of extremely mild distributional nonnormality

were [� � � ] the 0-factor Bartlett rescaling or Swain rescaling of the standard

ML covariance structure analysis test statistic" (p. 400). Unfortunately, she only

investigated very small models with no more than 12 variables. However, as

discussed earlier in the introductory section, it seems legitimate to expect an

improved performance of the Swain statistics compared to TML in large models

because of its favorable small-sample properties.

Summary

In summary, it is expected that TAD will perform better than TML, and that TML

will be more accurate than TSC for large models under conditions of multivariate

normality. We do not have much information about the Bartlett and the Swain

statistics, but it seems reasonable to expect an improved performance compared

to TML when the number of degrees of freedom increases.

Although we formulated expectations based on empirical findings from the

literature mainly, our study has a partly explorative character. Where appropriate,
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published results are revalidated by our investigations, but we seek to elaborate

and to generalize them to large structural equation models.

MONTE CARLO DESIGN

Sample Size Conditions

Sample sizes of 200, 400, and 800 are used. It can be problematic to investigate

sample sizes of N < 200 because it is well known that estimates of parameters

and standard errors may be biased seriously. Also, nonconvergence problems and

Heywood cases are more likely to occur for such small sample sizes (Boomsma,

1982, pp. 171, 1985; Boomsma & Hoogland, 2001). In practice, getting more

observations than 800 is not always possible or too expensive.

Population Models and Model Size

Most Monte Carlo studies reported in the literature examined very small popu-

lation models; see, for example, Asparouhov (2005) and Fouladi (2000). As for

the factor models in Hoogland’s (1999) meta-analysis, d ranged from 2 to 98.

For our study, it was decided to restrict the population models to confirmatory

factor analysis (CFA) models, because in practice these measurement models

are most widely applied.

In general, a factor model without an intercept term is defined as z D ƒŸC•,

where z .p � 1/ is a vector of observed variables, ƒ .p � k/ a matrix of factor

loadings on k common factors Ÿ1; Ÿ2; : : : ; Ÿk , and • .p �1/ a vector with unique

scores (measurement error), where E.Ÿ/ D 0, E.•/ D 0 and • is uncorrelated

with Ÿ. Under the usual assumptions, the population covariance matrix of z has

the form † D ƒˆƒ0 C ‰ , where ˆ D E.ŸŸ0/, and ‰ D E.••0/ is a diagonal

matrix with unique score or error variances.

To study a variety of model sizes, the number of factors k was set at 4, 6, 8,

10, 12, 14, and 16. Each factor has three indicators, so the number of observed

variables p ranges from 12 to 48. To achieve identifiable models, the variance of

each latent construct was fixed to the value of one. Furthermore, the population

factor loadings were set to 0.70 and the error variance to 0.51 for each indicator.

The correlation between each pair of factors was set to 0.30. Table 1 gives an

overview of characteristics of the seven factor models.

Number of Replications

A total number of NR D 1,200 replications was used. Although 300 replications

would have been a “reasonable trade off between precision, and the amount of
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TABLE 1

Overview of Factor Models of the Monte Carlo Design and

Seed Values for Data Generation

Seed

k p p� t d N D 200 N D 400 N D 800

4 12 78 30 48 77703570 49330350 71578326

6 18 171 51 120 83444508 39023988 68738111

8 24 300 76 224 16159776 44724671 97116941

10 30 465 105 360 71034416 06466931 85864123

12 36 666 138 528 56460497 36267030 98682926

14 42 903 175 728 64459199 07380304 07013316

16 48 1176 216 960 48795874 79583898 23965379

Note. k is the number of factors; p D 3k the number of observed variables; p� D p.p C1/=2

the number of independent elements of S; t the number of parameters to be estimated; d D p� � t

the number of degrees of freedom.

information to be handled" (Hoogland, 1999, p. 59), it was decided to use four

times as many replications to lower the standard error of percentages presented

in Tables 2, 3, and 4 (see next section). For example, under the null hypothesis

that the nominal value of a 5% significance level holds, the standard error of the

percentages reported in the cells of these tables equals 0.629%, where it would

have been twice as large if only 300 replications had been used.

Data Generation and Model Estimation

Multinormal variables were generated to isolate the effect of model size (and

sample size) on the test statistics, and to set a normal baseline for compar-

ison with nonnormal data in future research. The population covariance ma-

trix of these normal variables is defined by the population factor structure of

the models under study: †.™j /, j D 1; 2; : : : ; 7. Both the generation of the

sample data and the estimation of the models was performed using the Mplus

software program (Version 3.11; Muthén & Muthén, 2004). The seed values

for the pseudo-random draws of samples from the multivariate normal popu-

lation distributions for each cell in the design are listed in Table 1. The start-

ing values for the model parameter estimates were fixed at their population

values.

The factor models were estimated using the primary estimation setting of

maximum likelihood (ML) in Mplus. For the mean-adjusted and mean- and

variance-adjusted estimation of the chi-square statistic, the estimation option in

Mplus was MLM and MLMV, respectively, which are both maximum likelihood
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procedures. For the statistical analyses of the generated model estimates, R soft-

ware (Version 2.1.1) was used (see, e.g., Venables & Smith, 2005).

Statistics

The sampling distributions of the nine test statistics based on the 1,200 replica-

tions were observed. First, the empirical rejection rates on the 5% Type I error

level were inspected. A tolerable rejection rate is defined here as one that falls

in the two-sided 99% adjusted Wald confidence interval estimate, calculated

as [3.5, 6.8]; see Agresti and Coull (1998). If the observed rejection rate falls

outside this interval, it is concluded that the population rejection rate differs

from 0.05; that is, rejecting the null hypothesis that the population rejection rate

equals 0.05, using a 1% significance level. A 99% interval estimate was chosen

because of the large number of replications, hence slightly reducing the power

of the test compared to a 95% interval estimate.

Second, by means of a one-sample Kolmogorov–Smirnov test (e.g., Birn-

baum, 1952) it was tested at a 1% significance level whether the empirical sam-

pling distributions of the fit statistics follow the proper theoretical chi-square

distribution. Because the value of the number of degrees of freedom for AD-

based test statistics varies over sample covariance matrices, the rounded mean

value over 1,200 replications was used as the number of degrees of freedom

of the theoretical chi-square distribution. In Tables 2 through 7, this rounded

mean value is shown in brackets in column 12; in all cases it was equal to the

median value of d 0. In addition, selected PP and QQ plots (percentile-percentile

and quantile-quantile plots), were used to illustrate the findings, so as to provide

a visual reply to the question: How do the deviations from the theoretical chi-

square distributions look?

Information about the discrepancies between empirical and theoretical distri-

butions of test statistics, by means of both Kolmogorov–Smirnov tests and PP

and QQ plots, is reported here for two reasons. First, 5% Type I error rates are

quite arbitrary; sometimes 1% or 10% significance levels might be preferred.

Second, in applied research p values of estimated model fit statistics are re-

ported quite often, especially if in favor of the postulated model. If we had

confined ourselves to rejection rate behavior at a 5% significance level, not only

would it be difficult to generalize results to other significance levels, but also,

and more important, no information about the empirical distribution function of

the statistics as compared to the theoretical chi-square distribution would have

been obtained.

In the statistical analyses, all 1,200 replications were used for all cells in the

design, because no convergence problems and no improper solutions occurred

in model estimation.
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FINDINGS AND RECOMMENDATIONS

In this section, we first focus on the empirical rejection rates of the nine test

statistics for model fit and compare them with the rejection rates predicted by

asymptotic theory. Second, the sampling distributions of the test statistics are

compared to the theoretical chi-square distributions by means of a one-sample

Kolmogorov–Smirnov test. Third, the findings are further visualized by means

of PP and QQ plots of the empirical sampling distributions of the test statistics.

Finally, based on the results of these analyses, recommendations are formulated

for the use of appropriate model test statistics in applied research when large

models are at stake. In addition, the implications of our findings are briefly

illustrated by correcting the fit of a recently published applied model.

Type I Error Rates

The empirical rejection rates were computed across the 1,200 replications. The

differences of these rejection rates to the nominal 5% value are summarized

in Table 2 (N D 200), Table 3 (N D 400), and Table 4 (N D 800). Values

larger than zero indicate that the population model is rejected too frequently,

whereas values smaller than zero indicate that the corresponding statistic is

too conservative. The boldfaced numbers in these tables indicate acceptable

rejection rates, for nominal ’ D 0:05 defined as O’ 2 Œ0:035; 0:068�, implying that

acceptable difference rates in the tables are within the range Œ�1:5%; C1:8%�.

Likelihood ratio statistic. The quantile bias of this statistic reduces with

increasing sample size and decreasing model size. It can be seen that TML

performs extremely badly. In fact, the rejection rate is not acceptable for all

model sizes for a sample size of N D 200 and N D 400. This latter finding is

in line with research findings of Boomsma (1983, Table 4.4.16, Model 4CM),

who analyzed a very similar model. The amount of this bias is considerable: For

the largest model with d D 960 and N D 200 the progressive bias is 70.7%.

Furthermore, the performance is not even acceptable for N D 800 when models

with six or more factors are analyzed.

As a consequence of these findings, it is not recommendable to employ TML

for the test of large models. Although the effect of increasing degrees of freedom

has been reported frequently, the amount of the bias detected here is quite

alarming. The effect of increasing degrees of freedom seems to be comparable

to the effect of testing models with nonnormal variables. Curran et al. (1996), for

example, reported empirical rejection rates of 48% for the nominal 5% Type I

error rate when severely nonnormal variables (univariate kurtoses of 21.0 and

skewnesses of 3.0) were analyzed (Curran et al., 1996, p. 22, Table 1). The

rejection rate bias in our study is similar to the bias reported by these authors.
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TABLE 2

Empirical Minus the 5% Nominal Type I Error Rates of Nine Model Fit Statistics

for N D 200 (NR D 1,200)

k TML TSC TAD TMLb TSCb TADb TMLs TSC s TADs d (d
0

/ a N : t

4 3.2 3.8 1.1 .3 1.4 �1.0 1.4 2.0 �.2 48 (36) 6.7

6 4.9 6.3 �.6 �.8 �.5 �3.5 .4 1.2 �3.1 120 (69) 3.9

8 9.7 13.2 �.5 �1.7 �.7 �4.6 .8 2.7 �3.5 224 (98) 2.6

10 20.3 24.9 �.5 �2.9 �1.7 �4.7 .8 3.2 �4.4 360 (120) 1.9

12 33.3 38.9 .8 �3.3 �2.4 �4.9 2.5 4.6 �4.7 528 (136) 1.4

14 50.9 57.1 1.2 �3.8 �3.4 �5.0 2.8 4.3 �5.0 728 (149) 1.1

16 70.7 76.4 4.2 �4.3 �4.0 �5.0 3.2 6.9 �5.0 960 (158) .9

a d
0

denotes the rounded mean of d 0 for TAD , TADb , and TADs over 1,200 replications.

Note. Values in the range [�1.5, 1.8] are defined as acceptable and are thus printed in bold

face.

TABLE 3

Empirical Minus the 5% Nominal Type I Error Rates of Nine Model Fit Statistics

for N D 400 (NR D 1,200)

k TML TSC TAD TMLb TSCb TADb TMLs TSC s TADs d (d
0

/ N : t

4 2.6 3.1 1.6 1.2 1.7 1.5 2.0 .7 48 (41) 13.3

6 3.1 3.8 .7 .5 1.1 �1.6 1.3 1.9 �1.1 120 (88) 7.8

8 3.6 4.5 �1.5 �1.8 �1.0 �3.6 �1.3 .3 �3.2 224 (136) 5.3

10 6.5 8.3 �.9 �1.1 �.7 �4.0 1.3 �3.3 360 (179) 3.8

12 11.4 14.3 �1.0 �2.0 �1.1 �4.8 .2 1.3 �4.6 528 (215) 2.9

14 21.0 22.0 �1.9 �2.8 �2.2 �5.0 1.4 2.9 �4.7 728 (245) 2.3

16 26.0 29.7 �1.7 �3.4 �2.8 �5.0 .8 2.1 �4.6 960 (268) 1.9

Note. Blank cell indicates that the empirical error rate equals the nominal rate of 5%. Values

in the range [�1.5, 1.8] are defined as acceptable and are thus printed in bold face.

TABLE 4

Empirical Minus the 5% Nominal Type I Error Rates of Nine Model Fit Statistics

for N D 800 (NR D 1,200)

k TML TSC TAD TMLb TSCb TADb TMLs TSC s TADs d (d
0

/ N : t

4 1.4 1.7 1.1 1.0 1.3 .7 1.1 1.3 .7 48 (44) 26.7

6 2.2 2.7 .7 .6 1.0 �.6 1.2 1.6 �.4 120 (101) 15.7

8 3.1 3.0 .8 .8 1.3 �1.5 1.7 2.1 �.5 224 (169) 10.5

10 1.9 2.6 �1.1 �1.0 �.7 �3.3 �.2 �.1 �2.6 360 (238) 7.6

12 5.6 6.1 �1.1 �1.0 �.8 �3.6 .7 1.8 �2.9 528 (305) 5.8

14 5.7 6.6 �1.7 �1.8 �1.6 �4.4 �.1 .3 �3.8 728 (365) 4.6

16 8.8 10.9 �2.1 �2.3 �1.7 �4.7 �.1 .8 �4.2 960 (418) 3.7

Note. Values in the range [�1.5, 1.8] are defined as acceptable and are thus printed in bold

face.
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Therefore, one could argue that, in both theoretical and applied research, the

issue of model size should deserve similar attention as the robustness against

nonnormality.

Scaled Satorra–Bentler statistic. Like for TML, the finite sample bias

of the test statistic TSC reduces with increasing sample size and decreasing

model size. As expected, and therefore consistent with the results of simulation

studies mentioned earlier, the performance of TSC is slightly worse compared

to that of TML. For nearly all investigated sample sizes, the rejection rates are

not acceptable. For N D 200 and 16 factors, the bias in the empirical rejection

rates is 76.4%. It follows that the use of TSC is no option for the evaluation of

large models.

Adjusted Satorra–Bentler statistic. For TAD with N D 200, there is a

slight tendency of a reduced finite sample bias when model size decreases, but

this tendency is much weaker compared to that of TML and TSC . For N D 400

and N D 800, TAD slightly underestimates nominal Type I error levels when

the model size increases. Overall, however, the results indicate that TAD clearly

outperforms TML and TSC for all models under study. The rejection rates on the

5% error level are nearly perfect for N D 200 and models with up to 14 factors.

Therefore, our study revalidates the finding of Fouladi (2000) that test statistic

TAD has excellent Type I error control. The reason for the good performance of

TAD seems to be Satterthwaite’s (1941, 1946) variance correction, which adjusts

the tail of the distribution of TML adequately.

In general, our expectations with respect to the behavior of the mean- and

variance-adjusted test statistic TAD are not refuted. Recall that Fouladi (2000)

found that TAD outperforms 12 other statistics with respect to Type I error con-

trol under various distributional conditions and for different models. Therefore,

TAD seems to be relatively robust against model size, small sample size, and

nonnormality. Nevitt and Hancock (2004) seem to be disinclined to recommend

this statistic, because it slightly underestimates the nominal Type I error rates

when nonnormal variables are analyzed. Their conclusions challenge those of

Fouladi (2000); more research on this issue is therefore necessary. Nevertheless,

after inspection of the empirical rejection rates, it seems legitimate to use TAD

with approximately normal data, but a more final judgment will be postponed

after inspection of the Kolmogorov–Smirnov test results.

Bartlett-corrected statistics. All Bartlett statistics underestimate the nom-

inal rejection rates with increasing model size. Where most statistics are pro-

gressive (i.e., the null hypothesis is rejected too often, or the rejection rates are

too high) for N D 200, the Bartlett corrections show a conservative trend (i.e.,

the null hypothesis is “conserved” too often, the rejection rates are too low). This
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is consistent with our expectation based on the results of Nevitt and Hancock

(2004). Compared to TAD, the statistics TMLb , TSCb , and TADb are slightly

more influenced by model size. Interestingly, TSCb performs better than TMLb .

It seems that the progressive tendency of TSC dominates for smaller model sizes,

whereas a general conservative effect of the Bartlett corrections dominates when

the models get larger. Based on the empirical rejection rate performance only,

we are slightly hesitant to recommend the use of Bartlett statistics, because these

statistics are too conservative and do not reveal an adequate Type I error control,

at least not for large models and small sample sizes.

Swain-corrected statistics. The results indicate that TMLs is less affected

by model size compared to TMLb. The statistic TMLs has appropriate rejection

rates for N D 200 up to 10 factors. Compared to all other statistics, TMLs

is less influenced by the model-size effect, especially when the sample size is

400 or 800. TSCs performs equally well compared to TSCb . TADs is clearly

too conservative. Thus, it seems legitimate to use TMLs in applied research, but

again, a more final judgment will be formulated after looking at the results of

the Kolmogorov–Smirnov test.

Intermediate conclusion. To summarize the results presented so far, we

conclude that (a) TMLs , (b) TAD, and (c) TSCs or TSCb—in that order—yield

the best 5% Type I error control in large models.

Kolmogorov–Smirnov Tests

To check whether the empirical sampling distributions of the test statistics,

FNR.x/, deviate significantly from their reference chi-square distribution, Fd .x/,

with d degrees of freedom, the one-sample Kolmogorov–Smirnov test statistic

DNR D supx Œ jFNR.x/�Fd .x/j � was computed. The DNR values are presented

in Table 5 (N D 200), Table 6 (N D 400), and Table 7 (N D 800). In the eval-

uation of test results we applied a two-sided 1% significance level. In our case,

with NR D 1,200 replications, the critical value of the DNR statistic at that 1%

level equals 1:63=
p

1,200 D 0:047 (Massey, 1951). Nonsignificant DNR values,

indicating closeness of fit, are boldfaced in the tables.

For the smallest sample size N D 200, TMLs clearly outperforms all other

statistics for large models. Although significant deviations for the larger models

are reported, the relatively good performance of TMLs compared to the other

statistics under study is obvious. The statistic TAD does not perform well, al-

though it produced Type I error rates close to those of TMLs . When the sample

size increases to N D 400, TSCb is the second best statistic. For N D 800,

TMLs and TSCs are the best performing statistics regarding their expected dis-

tributional match.
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TABLE 5

The DNR Values of the One-Sample Kolmogorov–Smirnov Test of Nine Model Fit Statistics

for N D 200 (NR D 1,200)

k TML TSC TAD TMLb TSCb TADb TMLs TSC s TADs d (d
0

) N : t

4 .087 .110 .139 .022 .025 .070 .029 .044 .085 48 (36) 6.7

6 .138 .167 .203 .060 .037 .078 .013 .043 .111 120 (69) 3.9

8 .253 .295 .292 .068 .027 .100 .054 .097 .151 224 (98) 2.6

10 .368 .414 .367 .133 .076 .151 .057 .116 .178 360 (120) 1.9

12 .482 .528 .443 .195 .141 .186 .060 .124 .213 528 (136) 1.4

14 .626 .668 .516 .284 .205 .275 .099 .148 .230 728 (149) 1.1

16 .761 .800 .598 .362 .283 .301 .104 .189 .264 960 (158) .9

Note. The critical value of D1,200 at a two-sided 1% significance level equals 0.047. Values in

the range [.000, .047] are defined as acceptable and are thus printed in bold face.

TABLE 6

The DNR Values of the One-Sample Kolmogorov–Smirnov Test of Nine Model Fit Statistics

for N D 400 (NR D 1,200)

k TML TSC TAD TMLb TSCb TADb TMLs TSC s TADs d (d
0

) N : t

4 .084 .089 .102 .033 .044 .050 .044 .054 .060 48 (41) 13.3

6 .086 .102 .092 .038 .030 .033 .021 .037 .042 120 (88) 7.8

8 .145 .169 .176 .031 .016 .076 .038 .063 .093 224 (136) 5.3

10 .186 .211 .212 .070 .044 .105 .036 .059 .109 360 (179) 3.8

12 .260 .292 .291 .103 .070 .121 .034 .065 .151 528 (215) 2.9

14 .351 .385 .332 .118 .085 .164 .055 .092 .157 728 (245) 2.3

16 .428 .463 .399 .184 .138 .199 .047 .093 .190 960 (268) 1.9

Note. Values in the range [.000, .047] are defined as acceptable and are thus printed in bold

face.

TABLE 7

The DNR Values of the One-Sample Kolmogorov–Smirnov Test of Nine Model Fit Statistics

for N D 800 (NR D 1,200)

k TML TSC TAD TMLb TSCb TADb TMLs TSC s TADs d (d
0

) N : t

4 .048 .055 .074 .030 .025 .043 .025 .029 .048 48 (44) 26.7

6 .044 .047 .064 .026 .023 .031 .020 .023 .039 120 (101) 15.7

8 .096 .104 .109 .018 .023 .047 .037 .046 .061 224 (169) 10.5

10 .087 .096 .126 .062 .053 .072 .023 .022 .074 360 (238) 7.6

12 .135 .157 .159 .063 .054 .073 .024 .040 .086 528 (305) 5.8

14 .175 .192 .208 .072 .055 .109 .027 .044 .108 728 (365) 4.6

16 .235 .257 .268 .090 .065 .130 .037 .056 .143 960 (418) 3.7

Note. Values in the range [.000, .047] are defined as acceptable and are thus printed in bold

face.
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FIGURE 1 PP plots for TML (N D 200; NR D 1,200).

FIGURE 2 QQ plots for TML (N D 200; NR D 1,200).

PP Plots and QQ Plots

Graphical comparisons of the sampling distributions of the statistics to their

reference chi-square distributions are provided to visualize information from

Tables 2 through 7. Both PP plots and QQ plots are shown because PP plots

are more sensitive to deviations in the middle of a distribution, whereas QQ

plots are more sensitive to deviations in its tails (Gnanadesikan, 1977). The

plots for TML (Figures 1 and 2) are included because TML serves here as the

reference statistic to illustrate the potential benefits of using TMLs (Figures 3

and 4). In addition, Figures 5 and 6 demonstrate the extremely bad distributional
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FIGURE 3 PP plots for TMLs (N D 200; NR D 1,200).

FIGURE 4 QQ plots for TMLs (N D 200; NR D 1,200).

performance of TAD : The 5% Type I error rate is approximately correct but the

overall behavior is clearly deviant. The plots for the smallest model (d D 48)

and the largest model (d D 960) are shown for the worst case scenario where

N D 200.

When comparing Figures 1 and 2 to Figures 3 and 4, the disastrous results

for TML clearly emerge. Overall, TMLs has a very close approximation to the

reference chi-square distribution. Therefore, we reconfirm our recommendation

to use this correction of TML in applied research when large structural equation

models are analyzed.
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FIGURE 5 PP plots for TAD (N D 200; NR D 1,200).

FIGURE 6 QQ plots for TAD (N D 200; NR D 1,200).

Final Conclusion

In summary, the best performing statistic with respect to Type I error control

and the approximation of the reference chi-square distribution is TMLs . There-

fore, we recommend using this statistic when many (approximately) multinormal

distributed variables are under study in SEM. From Equations 10 through 12 it

can be seen that the correction will have only a very small effect on the chi-

square value for smaller models or larger sample sizes. From that perspective it

would make sense to apply the correction quite generally.
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Software

The calculation of TMLs is quite easy once the value of TML is available, because

Swain’s correction factor is a simple function of known values of p, N , and d

or t . The p values for the test statistic TMLs are also easily computed with com-

puter software, for example with the function pchisq(x,d), where x D TMLs ,

and d is the number of degrees of freedom, from freely available R software (cf.

Venables & Smith, 2005, section 8.1). Although this is a small effort in prac-

tice (the R-function swain for the calculation of TMLs and its corresponding p

value can be downloaded from http://www.gmw.rug.nl/�boomsma), we would

recommend implementing the Swain correction in standard SEM software.

Example

To illustrate the effects of using TMLs, the value of TML was corrected in a

recently published article. Ramaswami and Singh (2003) estimated a confirma-

tory factor model with N D 154, k D 13, p D 51, d D 1,147, and t D 179.

They reported TML D 1,307 with a p value of 0.0007, which would lead to a

rejection of the model if a formal test was applied at significance levels of 5%

or 10%, say. When the Swain correction is applied, the value of TMLs equals

1,146 with a relatively large increase of the p value to 0.5034. Hence, the model

is certainly not rejected when this Swain-corrected test of exact fit is performed.

Of course, chi-square dependent statistics like the RMSEA are also affected by

the model-size effect: The RMSEA test statistic for close fit would drop from

0.0302 (Ramaswami and Singh reported 0.0320) to 0.0000 when using TMLs.

DISCUSSION

A Retrospective View on Applied Research

In the following we briefly discuss the consequences of our results for past

applied research using large covariance structure models. Even if the estimated

models in those applications were specified correctly, with variables having

nearly normal distributions, we suspect that the fit of most models was under-

estimated. Two strategies might have been used when small p values of the

chi-square model fit statistics occurred.

First, the chi-square statistic for global model fit might be neglected com-

pletely and refuge might be taken to other fit statistics (e.g., the RMSEA) or fit

indexes (e.g., the TLI, the CFI, and the standardized root mean square residual,

SRMR). Apart from the RMSEA, which is asymptotically based on a noncentral

chi-square distribution, research on the distribution of the latter statistics is still

at its beginning (e.g., Hu & Bentler, 1999; Ogasawara, 2001). The sampling
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distribution of most fit indexes is just unknown. Researchers therefore rely on

certain cut-off values for such indexes, that have been recommended in the lit-

erature (e.g., Hu & Bentler, 1999). These cut-off values are partly arbitrary, and

moreover, the blindfolded use of such “golden rules” has proven to be inaccu-

rate under circumstances (Kaplan, 1988; Marsh, Hau, & Wen, 2004; Saris, Den

Ronden, & Satorra, 1987). More important, however, is the fact that most fit

statistics and indexes are also affected by the inflated TML, because they are a

function of this statistic when maximum likelihood estimation is applied. Given

the results of our study, it would make sense to substitute TMLs for TML when

calculating these fit statistics and fit indexes. For incremental fit indexes it is not

clear whether the fit statistic for the independence model needs to be adjusted

similarly; these are issues in need of further research (for first results see Herzog

& Boomsma, 2006).

Second, in applied (exploratory) SEM, modification indexes (Sörbom, 1989)

are often used extensively, as a last resort in the search for models that cannot

be rejected. In many cases, restrictions on covariances among measurement

errors are removed without interpreting their meaning, or explaining why such

covariances make sense from a theoretical point of view in the first place. This

seems to become a common practice, although Jöreskog (1993, p. 297) and

many others explicitly criticized this kind of pseudo-theory testing. Given our

research findings, the reliability of such model explorations, with TML as its

basis, must be questioned even further when at least 12 observed variables are

analyzed with sample sizes of up to N D 800.

The results of our study also suggest that it is not unlikely that there may

have been many studies in the past where correctly specified large models were

not published, because the models were rejected due to the inflated TML. Such

phenomena, also labeled “file drawer” problems (e.g., Scargle, 2000), clearly

attenuate scientific progress.

The N:t Ratio Criterion

The robustness of model test statistics against model size is not unimportant, as

our study shows. An obvious overall remedy to avoid the problem of inflated

values of test statistics is to increase sample size N relative to the number of

degrees of freedom d , or to increase N relative to the number of parameters to

be estimated t , because t can in principle be interpreted as a measure of model

size as well. Certain rules of thumb regarding an adequate sample size relative

to the number of parameters t , the N : t ratio, can be found in the literature.

Bentler (1995), for example, recommended a ratio of at least 5:1 when TML is

used and the assumption of multivariate normality holds. Although such rules

of thumb are not without criticism (e.g., Jackson, 2003), we could evaluate our

results also in terms of the N : t ratio, that is, the relative sample adequacy. The
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last column of Tables 2 through 7 shows the value of this ratio. We can now

compare our results with earlier N : t recommendations and try to formulate

general guidelines in terms of relative sample adequacy for proper behavior

of model test statistics. One should realize, however, that the N : t ratio is a

simplifying rule of thumb regarding only two of the many factors that matter in

a research design.

Our results clearly show that Bentler’s 5:1 rule of thumb is not sufficient

for the sampling distribution of TML to be approximately chi-square. Even for

our smallest model and our largest sample size (d D 48, t D 30, N D 800),

with a N : t ratio of 26.7:1, the Kolmogorov–Smirnov test for TML indicates

a significant deviation from the chi-square reference distribution (see Table 7).

For our second smallest model (d D 120, t D 51, and N D 800), a N : t ratio

of 15.7:1 is not large enough for proper Type I error behavior of TML at the

5% significance level (see Table 4). Also, in contrast to Fouladi (2000, p. 401),

we would not conclude that TAD can be applied under conditions of small

N : t ratios. The results in Table 7 show that a ratio of 26.7:1 is insufficient

for proper behavior of TAD in moderately large models when inspecting its

sampling distribution as a whole, not just its 5% Type I error rates.

Earlier we discussed evidence that the Bartlett statistics suffer from an in-

creasingly conservative trend when model size increases. This effect may be due

to the fact that these corrections were originally developed for exploratory factor

analyses and not for general covariance structure analyses. For TSCb , this effect

is masked by the slightly more liberal tendency of TSC compared to TML. Thus,

for the models under study here, we do not observe and cannot conclude, unlike

Nevitt and Hancock (2004), that the Bartlett corrections “frequently delivered

acceptable Type I error rates at N : t � 2:1” (p. 467).

The most salient conclusion of our study is that overall the Swain-corrected

statistic TMLs performs best. The results in Tables 2 through 7 validate the

(strong) conclusion that for the models under study, apart from single small-

sample fluctuations, TMLs is robust against large model size if N : t � 2:1 under

conditions of normality. As will be indicated in the next section, more research

is needed to investigate the interaction of nonnormality and model size.

However, although it seems convenient for applied researchers to have rules

of thumb like N : t (or N : p ratios for that matter) it would be unwise to follow

these guidelines blindly; compare the sincere warnings of Marsh et al. (1998)

and Boomsma and Hoogland (2001, p. 142f). First, the mild requirement that

for the use of TMLs the N : t ratio should be at least 2:1 should certainly not be

interpreted as an encouragement to always stay away from large models, or to

use a small number of indicators per factor, which, as a start, would increase the

occurrence of nonconvergent and improper solutions. Second, easy formulated

rules of thumb regarding the N : t ratio also should not overshadow sample

size requirements related to the stability of parameter estimates or the size of
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estimated standard errors of parameter estimates, and considerations as to the

power of model test statistics, either locally or globally.

Limitations and Future Work

� It is well known that nonnormality has an inflating effect on chi-square

model fit statistics (cf. Boomsma, 1983). It should be investigated how

well the test statistics, and in particular the Swain-corrected scaled Satorra–

Bentler statistic, behave in large models under conditions of nonnormality.
� This study was confined to factor models. It seems necessary to expand

the scope of structural equation models under investigation to a broader

range. For these other types of models a main question is also whether

and to which extent Bartlett adjustments are effective in comparison with

Swain’s correction.
� Another issue concerns the specific value of 0.70 of the factor loadings

that was used in our study. According to the research by Hoogland (1999),

the rejection rates are more accurate for smaller factor loadings. Maybe

the same pattern will be observed for the test statistics from our study as

well.
� The test statistic TMLs deserves additional attention from a statistical power

perspective. After assessing the Type I error rates, future studies should

also focus on the power of this corrected test statistic in comparison with

a few other promising ones. Emphasis would then turn more to Type II

error rates (cf. Nevitt & Hancock, 2004).
� As mentioned earlier, the effect of the proposed corrections of TML on

other fit statistics and indexes, like the RMSEA, the TLI, and the CFI,

requires further attention. It needs to be investigated to which extent other

fit measures are affected by corrected global test statistics (for first results

see Herzog & Boomsma, 2006). The SRMR, in our view a fit measure that

needs to be inspected in all circumstances, certainly is not.
� This simulation study emphasized the importance of investigating the finite

sample behavior of statistics in large models. The disastrous results for TML

and TSC may raise questions regarding the generalizations made in many

previous simulation studies. One direction of further investigation could be

to revisit those studies, and to check whether reported findings generalize

to larger models.
� Wakaki, Eguchi, and Fujikoshi (1990) derived a (relatively complex) Bartlett

adjustment factor for the test of general covariance structures. In a first

simulation study, this correction significantly improved the performance

of TML (Kensuke, Takahiro, & Kazuo, 2005). Therefore, it would be of

interest to compare its performance with that of the statistics presented

here.
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� Within the framework of Bayesian estimation of structural equation models,

Lee and Song (2004) made a comparison with the classical, frequentist use

of TML, and found that the Bayesian posterior predictive p values are less

biased compared to the maximum likelihood p values under conditions

of small sample sizes (cf. Scheines, Hoijtink, & Boomsma, 1999). They

also found that the posterior predictive p values are not accurate when

nonnormal variables are analyzed. A comparison of the performance of the

Bayesian approach to that of TMLs for large models would be intriguing.

CONCLUSION

Some years ago, Kaplan (1988) came to the conclusion that the chi-square model

statistic “should be taken seriously as a means of formally testing model specifi-

cation" (p. 85). For large models, it has been shown here that researchers should

seriously consider corrected model test statistics if such a formal approach of

model testing is being taken. Otherwise, biased inference might be an undesirable

consequence. If this problem is acknowledged, and proper corrections are indeed

applied, there are enough obstacles to clean inference left (cf. Jöreskog, 1993).
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