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This contribution is focused on how to write a research paper when structural equation
models are being used in empirical work. The main question to be answered is what in-
formation should be reported and what results can be deleted without much loss of judg-
ment about the quality of research and the validity of conclusions being made. The ma-
jor conjecture is that all information should be reported, or referred to, that enables each
member of the scientific community, at least in principle, to replicate the analysis as it is
published. The recommendations are ordered in the framework of the empirical re-
search cycle. They are meant for authors, in particular students employing structural
equation models for their dissertation, as well as for editors and reviewers.

PRELIMINARY

When reading applied research concerning structural equation modeling (SEM), it
is often difficult to judge its merits. This often occurs for several reasons: for in-
stance, a lack of theoretical foundations for the postulated structural relations, inac-
curate description of the model or the applied estimation methods, a lack of report-
ing the psychometric properties of scales, not providing the sample data or not even
mentioning the sample size, giving an obscure delineation of the model modifica-
tion process, or not describing the population under study. These deficiencies and
lack of information make it very difficult and even annoying to evaluate the quality
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of such research because a proper scientific assessment cannot be done at all.
Ideally the reader should be in a position to replicate the reported study. Frequently,
however, this cannot be done.

How can such circumstances, which impair proper evaluation and replication of
SEM, be avoided? A first step is to summarize the basic pieces of information that
should be included in a publication about applied SEM methodology. A second step
is to pay attention to some fundamental issues in doing that type of research, which
should be reflected in its reporting. The purpose of this article is to offer some guide-
lines, or recommendations, regarding the content and organization of publications
on applications of SEM. First some related publications are mentioned.

General directions for research publications can, for instance, be found in the
Publication Manual of the American Psychological Association(1994). Since the
release of this latest edition, however, progress has been made in terms of selecting
proper fit indexes, hence hopefully the fledgling researcher will not only report
what is enumerated in the manual (i.e., NFI, PFI; o.c., p. 134). Maxwell and Cole
(1995) offered some general tips for writing methodological articles. They also
highlighted several ways in which authors can make their methodological work
more accessible, and less painful, as they put it, to readers who are not method-
ological experts. Raykov, Tomer, and Nesselroade (1991) proposed some guide-
lines for reporting SEM results in articles submitted toPsychology and Aging.
Hoyle and Panter (1995) published a chapter on how to write about structural
equation models, emphasizing the description of results of the analysis and model
fit criteria in particular. Some of the material covered by the latter two publications
coincides with the approach taken here.

The ordering of the contents of this article mirrors the empirical research cycle
(observation, induction, deduction, testing, and evaluation) as discussed by De
Groot (1966, 1969). In describing the different phases of this cycle, usually more
general terms are employed:Introduction(the problem, theory, model, or hypoth-
eses),Method(how to attack the problem, how to test the model),Results(esti-
mates of model parameters and model fit), andDiscussion(evaluating the results
of the analysis). Figure 1 highlights main features of the research cycle in SEM.

With regard to Method and Results, the general stand is taken that all informa-
tion should be reported that enables a researcher to replicate the published empiri-
cal research. If that is not possible in all detail, it should be indicated how the
missing information can be obtained from the author. For example, references can
be made to technical reports and unpublished manuscripts containing the suffi-
cient statistics and more detailed information, or to the availability of data files on
the World Wide Web or elsewhere (with reliable postal, e-mail, and Internet ad-
dresses being essential). Such publication standards serve to ensure the possibility
of replication and thus of well-founded criticism and discussion. One of the crite-
ria for manuscript consideration therefore can be that the model be replicated by an
objective source, so as to prevent any flaws that might otherwise occur. If the crite-
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FIGURE 1 Flow diagram of the SEM process.



rion of replication cannot be met, the manuscript might as well be sent to theJour-
nal of Irreproducible Resultsor to its successor,The Annals of Improbable
Research.

Frequently, editors of scientific journals will urge authors to be concise, which
forces the latter to shorten their manuscript more or less drastically. In deleting
material from a manuscript, a basic criterion to consider again is that fellow re-
searchers must be able to replicate the analysis. The issue of being forced by edi-
tors to reduce the size of a paper may well serve to emphasize that it is not only the
responsibility of authors, but even more strongly that of editors and other review-
ers, to ascertain that the criterion of potential replication is being met. The recom-
mendations or guidelines that follow would lose their prescriptive impact if only
authors, but not the editors and reviewers involved, would keep up some basic
standards of publication.

In writing about the analysis of structural equation models and trying to have its
results published, authors could also benefit from the recommendations of
Abelson (1995). He introduced the MAGIC criteria that govern the persuasive
force while presenting the theory, the data, and the statistical and substantive anal-
ysis of the problem. He labels his five criteria as magnitude of effects, articulation,
generality, interestingness, and credibility. Regarding the first four of these
MAGIC criteria, he claims, “A good rule of thumb—therule of two criticisms—is
that two deficiencies among these four criteria will result in rejection by journal
editors” (p. 170). Authors are warned not to neglect the implicit advice too easily.

INTRODUCING THE PROBLEM

In the introduction of a research paper about the application of structural equation
models, usually some summarized background information is given of crucial re-
sults related to the problem under study. This means that a substantive background
regarding the state of the art of the research subject is presented. In this way, the re-
search questions under consideration are placed in a theoretical framework that fits
closely the empirical knowledge gained so far. The goal of the introduction is to
make it crystal clear what research questions are to be answered in the sequel, and
what their potential importance is for the nomological network of theoretical
knowledge (cf. De Groot, 1966, 1969).

THE THEORY

Next, but closely following the introduction of the research problem, a brief ac-
count is given of the substantive, theoretical foundations of the model, or a set of
models, to be analyzed. In principle, this means that a theoretical justification is
given for the imposed directed, structural relations between the constructs or
variables of interest. This in turn implies that the direction, the sign, as well as
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the expected strength of such relations are discussed from a substantive point of
view, as far and concise as possible. In the spirit of meta-analysis and Abelson’s
(1995) chapter on the magnitude of effects, speculating on the effect sizes with a
confidence interval would further provide concise evidence of the researcher’s
confidence and expertise regarding the postulated model. Some justification for
the nature of the proposed functional relations between variables could also be
given. Feasible questions to be asked in this context are related to the validity of
hypothesized linear or nonlinear relations, as well as the introduction of
nonrecursive paths (cycles); see Baumgartner and Bagozzi (1995) or Yang
Jonsson (1997, chapter 7) for an example.

Given the research questions posed in the introduction, it can be clarified—and
that need not always be obvious—why it is useful or necessary to apply SEM. Why
are competitive methods of analysis less appropriate to answer the research ques-
tions? For example, it can be elucidated why a simple correlation or classical re-
gression type of approach is inadequate in the current research setting. This might
give the reader an understanding why relatively complex approaches are preferred,
over simpler, more familiar ones, for properly tackling the problem. See also the
comments of the Task Force on Statistical Inference regarding the use of mini-
mally sufficient designs and analytic strategies and issues related to computerized
data analysis (the initial report of the Task Force of the American Psychological
Association can be found at URL http://www.apa.org/science/tfsi.html).

Although some design details can be postponed, the introduction must clarify
what kind of population the theory—the model, that is—applies to. The particular
population of objects the research is concerned with has to be specified (e.g., men
and women between 20 and 45 years old, growing up in Western societies). This
clarification is important for the sampling design, as well as for the possible
generalizibility of conclusions based on the current analysis.

THE SET OF MODELS UNDER STUDY

Often some basic modelMj for the structural relations is postulated (i.e., only one
model is considered), which implies a strict confirmatory statistical analysis is
being made. Frequently, however, it makes more sense not to analyze just a single
model, but rather a set of plausible modelsM1, M2, …, Mm (possibly in some pre-
ferred sequence). From a modeling point of view, the latter implies a less confirma-
tory type of analysis, because no single model is preferred to any other beforehand:
Each of them is defensible from a theoretical perspective and potentially adequate
to fit the sample data.

At any rate, the complete set of models to be analyzed should be presented and
justified in advance. For each model in this set, its relation to the underlying theory
should be accounted for. It is also important to know whether the set is a nested se-
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quence. If the set is nested, it is recommended to order the models from simple to
more complex ones, that is, from parsimonious to complicated models.

At early stages of theory development, the researcher should prefer simple
models, which reflect basic theoretical notions only. At a later stage, however, it is
conceivable to study more elaborate models in the spirit of R. A. Fisher, as strik-
ingly quoted by Cochran (1965): “when constructing a causal hypothesis one
should envisage as manydifferentconsequences of its truth as possible, and plan
observational studies to discover whether each of these consequences is found to
hold” (p. 252)—such an approach is generally less emphasized in SEM. Fisher’s
notion to elaborate theories is related to the concept of coherence and to the con-
struction of focused hypotheses; see Rosenbaum (1995, chapter 8) for a discussion
in the context of observational studies. Seen as risky predictions, the resulting
rather specialized models are in general advocated by Popper (1974, 1983), as
Rosenbaum demonstrated.

If no well-documented theory exists, or if hardly any explicit ideas about the
underlying covariance structure can be formulated, undoubtedly the analysis is ex-
ploratory. Because of its statistical consequences, the position of the researcher on
a confirmatory–exploratory type of dimension must be apparent from the start.
This position has implications for the reliability and validity of the final conclu-
sions as well: Exploratory analyses require replication or cross-validation, either
by analysis of an alternative data set or by bootstrapping and other statistical tech-
niques. As difficult as it may be, in the end some information about the stability of
the results (conclusions) should be available.

Whether the researcher should specify or consider a set of equivalent models
before collecting the sample data, as suggested by Hershberger (1995) following
Stelzl (1986), is disputable (the termequivalenceis used here in its narrow sense;
Hayduk, 1996). Others might prefer to identify equivalent models during the esti-
mation and model modification phase of the analysis. How to attack this problem
is a matter of theoretical knowledge and methodological efficiency. It should thus
be discouraged to specify equivalent models by relying purely on mathematics. If
specific equivalent models are a priori invalid from a theoretical perspective, it
makes no sense to incorporate them in the set of potential models or to consider
them in a process of model modification. If the set of equivalent models is un-
known, action might be taken to explore that set, for example by using the
TETRAD program (Scheines, Spirtes, Glymour, & Meek, 1994); see Hayduk
(1996), Freedman (1997), and Scheines, Spirtes, Glymour, Meek, and Richardson
(1998) for discussions about the TETRAD approach.

At some point, either after presenting the set of models or just before discussing
the estimation procedure, attention should be given to the question of identifica-
tion. It is the task of the researcher to try and examine whether a model is theoreti-
cally identified, which may or may not be a hard job to do. Efforts should be made
to check whether necessary and sufficient conditions exists for identifiability. See,
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for example, Bollen (1989), Bekker (1994), and the book by Bekker, Merckens,
and Wansbeek (1994) along with its software to control for conditions of identifi-
cation. The advice is to try and reinstall a declining tradition to solve the identifica-
tion problembeforeestimating the model. In addition, during the estimation phase
of the analysis, as much information as possible should be gathered about the (em-
pirical) identification of the model, for example by checking the occurrence of im-
proper estimates (Heywood cases) and symptoms of multicollinearity (cf.
Rindskopf, 1984).

STRUCTURAL AND MEASUREMENT PARTS OF THE
MODEL

By definition, latent variables are labels for the hypothetical constructs or theoreti-
cal concepts under study. As far as these latent variables do not coincide with ob-
served, measured variables, a difference can be made between the structural and the
measurement part of the model. If that is the case, as it most often will be, it should
be indicated unequivocally how latent variables are being measured, that is, what
the indicators for each of the latent variables are. Whenever possible, theoretical
justifications for the decisions being made here are reported briefly. The position
taken is that measurements of latent variables are part of the theory, albeit its mea-
surement part.

If available, knownaspectsof thevalidityand reliabilityof themeasurementsare
mentioned or referred to. Composite reliability and discriminant and construct va-
lidity are important issues in the establishment of durable constructs in a
nomological network of knowledge (e.g., Bollen [1989] and Raykov [1997]). Also,
ifaspecific instrument isbeingused, itshouldbeclearwhether the indicatorsaresin-
gle items, total scores, or some other scale measure of that instrument. Familiarity
with the effects of the number of indicators per factor and the degree of item parcel-
ing on model estimates is incumbent (Marsh, Hau, Balla, & Grayson, 1998).

The way in which latent variables are scaled should also be reported: either
direct scaling of latent variables to a variance of one, or indirect scaling by fixa-
tion of factor loadings of specific observed variables (the researcher should in-
dicate which ones). Thus, based on a description of the research, information is
now available concerning what the vector ofk observed variablesz = (y′, x′)′
and what the postulated relations between observed and latent variables in
modelMj (j = 1, 2, …,m) look like from a substantive point of view.

At least for the basic model in the set of models under consideration, a path dia-
gram should be presented rather than the mathematical model equations, which are
far more difficult to grasp. The path diagram should be complete; that is, it should
include both the structural and measurement errors in the model and possible
covariances among them. It is conceivable, however, that the model is so complex
that it is impossible to display it completely, or that editorial policies impose cer-
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tain restrictions here. In such cases, it remains necessary that the reader can deduce
the complete model from its verbal or mathematical description.

Clearly, a path diagram tends to show the presence of hypothesized effects. It
should be emphasized, however, that in developing a model, and in reporting that
process, paths that are absent are as important as those that are present. In practice,
authors should make every effort to justify the absence of effects: Presence of rela-
tions is, in principal, not more obvious than lack of associations; both need theoret-
ical justification and empirical backup.

THE POPULATION AND THE SAMPLE

Given the model under study, the population covariance matrixΣ = [σij] (k × k) of
the observed, random variablesz= (y′,x′)′ can be written as a function of the param-
eters of the model. That is, each elementσij can be written as a function of the un-
known population parametersθ(t × 1); in shortΣ = Σ(θ). Given the preceding model
description, the reader should be able to do this; otherwise crucial information is
lacking.

In principle, a random sample of sizeN is taken from the population under
study, which has covariance structureΣ = Σ(θ) by assumption. First, the popula-
tion from which a sample is taken is described; an approximation of its size and na-
ture should be given in terms of relevant background variables. As indicated
earlier, this is all very important for a proper understanding of the type of general-
izations that can be made after, or in the process of, formulating substantive con-
clusions. The sample sizeN should always be mentioned. Aspects of the sampling
procedure could be summarized next, for example, the sampling procedure not be-
ing random or being stratified and the response rate. In case of multisample or
multigroup analyses (cf. Jöreskog & Sörbom, 1996b), the information referred to
previously is reported for each group. This also applies when multilevel structural
equation models are analyzed (cf. Ernste, 1996; Hox, 1994; Jöreskog, Sörbom, Du
Toit, & Du Toit, 1999; McArdle & Hamagami, 1996; Muthén, 1994).

FEATURES OF THE OBSERVATIONS

Features of the distribution of observations in the sampleZ (N × k) should be de-
scribed briefly. The ultimate goal here is to justify the plausibility of distributional
assumptions of the estimation method that has to be selected in relation to such fea-
tures. The measurement level of the observations (interval, ordinal, or categorical)
is one such feature; the number of categories of ordinal variables is another one.
Some further examples and possibilities are enumerated now.

If the assumption of multivariate normality of the observed variables is made,
information about normality characteristics based on the sample of observations
can be presented (for example, descriptive statistics like skewness and kurtosis, or
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test statistics for univariate or multivariate normality). If transformations of ob-
served variables are made, they should also be described (purpose and formulas).
The LISREL 8.30 program has an option to normalize variables before analysis,
thus providing a way to deal with nonnormality in samples of small and moderate
size (Jöreskog et al., 1999).

If the asymptotically distribution-free or weighted least squares estimation
method is chosen, apart from the number of categories of ordinal and nominal vari-
ables, descriptive measures of skewness and kurtosis could be of interest here too,
because their size has consequences also for the robustness of that estimation
method (see Hoogland & Boomsma, 1998). And if polychoric correlations are
used (or if variables are clearly censored), the assumptions regarding the distribu-
tion of underlying variables might be checked.

The treatment of missing values, if any, should be reported. In the structural
modeling programs Amos (Arbuckle, 1997) and Mx (Neale, 1994) a direct,
model-based, maximum likelihood (ML) estimation procedure is implemented;
see Arbuckle (1996) for details. The Mplusprogram (Muthén & Muthén, 1998)
also uses an ML approach for missing values. The research of Verleye (1996)
and Duncan, Duncan, and Li (1998) showed that this ML procedure yields com-
paratively good estimates. So far, programs for covariance structure analysis
have no options to employ the multiple imputation approach to missing data
straightforwardly (Little & Rubin, 1987, 1990; Rubin, 1987, 1996; Schafer,
1996): Additional software is needed there. Such indirect methods are therefore
more cumbersome; they also seem to be less efficient than the direct ML ap-
proach (Duncan et al., 1998; Verleye, 1996). If imputation techniques are em-
ployed, details should be given or referred to. See also Brown (1994) for
comparisons of different procedures for handling missing data and Marsh (1998)
on possible problems with pairwise deletion procedures in SEM.

Criteria or arguments for deleting outlying observations should be provided
along with the number of deleted cases, if any. Often, deletion of outlying obser-
vations is not an easy task; it should be handled carefully (see Barnett & Lewis,
1994). Some users might find it helpful here when programs calculate histo-
grams, or univariate and multivariate measures for skewness and kurtosis; the
PRELIS program (Jöreskog & Sörbom, 1996c), for example, has many options.
The EQS program exposes the five case numbers with the largest contributions
to a Mardia-based normalized multivariate kurtosis coefficient (Bentler, 1995).
In the same context, it might be considered to take advantage of likeli-
hood-based procedures that replace ordinary sample covariances by robust esti-
mates of covariances (Yuan & Bentler, 1998b, 1998c).

In case of applications of structural equation models to clustered sampling de-
signs, attention should be given to not only the sample sizes of the different groups,
but also to the intraclass correlations so as to judge whether a multilevel analysis is
appropriate (see Muthén [1994] and Kaplan & Elliott [1997] for strategies and ex-
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amples). The features of the observations, which include the sample size, can (or
even should) have a strong impact on the choice of the estimation method. Ne-
glecting such features can have serious consequences, because biased estimates
may very well lead to wrong conclusions.

THE MOMENT MATRIX TO BE ANALYZED

There are several types of moment matrices, for example, a covariance ma-
trix S, a correlation matrixR, or an augmented moment matrixA. The type
of moment matrix to be analyzed always has to be specified, and if popula-
tion means are analyzed along with covariances, this should be brought up as
well. If the number of observed variablesk is not too large, the moment ma-
trix (and the vector of means) must be presented in a table, and if it is too
large, then the data should be made available via the Internet or by contacting
the author. At any rate, the reader should be able to inspect these sample data
or have access to them in principle. It has to be known also whether the sam-
ple size on which the moment matrix is based equals the size of the original
sample, or whether it is smaller due to missing observations or to deletion of
outlying observations.

If a correlation matrixR is analyzed, the reasons for doing so should be men-
tioned (cf. Cudeck, 1989; Jöreskog & Sörbom, 1989). In this context, it would
also be valuable to know whether the model is scale invariant and whether pa-
rameters are scale-free (cf. Bollen, 1989; Jöreskog & Sörbom, 1989). IfR is be-
ing analyzed, one might still be interested in the analysis of the corresponding
covariance matrixS, at least as far as that makes sense given the measurement
scale of variables. If appropriate, it is therefore recommended also to report the
vector of standard deviations of the observed variables along withR. But even if
the covariance matrix is the unit of analysis, many readers and researchers still
appreciate the publication of the correlation matrix as it is much easier to get a
feeling for intercorrelations of variables viaR as opposed toS. Therefore, in
general it is recommended to publish the correlation matrix along with standard
deviations, if appropriate.

THE ESTIMATION PROCEDURE

Given the model under study and the plausibility of the statistical assumptions to be
made in light of variable characteristics (level of measurement), the distributional
features of the sample from the population (including sample sizeN), and the mo-
ment matrix to be analyzed, an appropriate choice of the estimation method is
made. In making such a decision, robustness questions play a crucial role; see
Hoogland and Boomsma (1998) for an overview. The latter amounts to trying to an-
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swer the question of how robust the substantive conclusions of the analysis are
against violations of the statistical assumptions of potential estimation methods.

The method of ML assumes multivariate normality of the observed variables
and not too small a sample size (several hundred). Using the LISREL or EQS pro-
gram, the same holds for the generalized least squares estimation method (cf.
Bentler, 1995; Jöreskog & Sörbom, 1996b). On the other hand, the distribu-
tion-free or weighted least squares method needs a very large sample: in general
several thousand if the number of variablesk≥15; however, for a small model with
observed variables having no strong kurtosisN = 800 seems large enough. See, for
example, Hu, Bentler, and Kano (1992), West, Finch, and Curran (1995), Curran,
West, and Finch (1996), Hoogland and Boomsma (1998), and Hoogland (1999). In
view of these previous general requirements, it is important to have knowledge of
the recent work of Marsh et al. (1998) and Marsh and Hau (1999), confirming the
findings of Boomsma (1985). Their results indicate that a higher number of indica-
tors per factor ratio in confirmatory factor analysis may compensate for smallN,
and largerN may compensate for a small number of indicators per factor ratio.

Nowadays, programs like EQS and LISREL (back to version 8.20) have the
nice feature of calculating scaled test statistics and so-called asymptotically robust
estimates of standard errors. These statistics appear to be (asymptotically) robust
against deviations from normality (see Browne, 1984; Chou & Bentler, 1995;
Chou, Bentler, & Satorra, 1991; Satorra, 1990, 1992, 1993; Satorra & Bentler,
1994). Whenever appropriate, such estimates should be preferred over less robust
estimates; among other factors, the preference for robust estimates depends on the
sample size and the complexity of the model (cf. Hu et al., 1992). For more recent
developments in this area, see Yuan and Bentler (1995, 1997, 1998a; and Bentler
& Yuan, 1999).

It should always be mentioned explicitly which computer program was used
to estimate the model. This should include not only the name of the program, but
also its version number (e.g., LISREL 8.30), because estimation results may dif-
fer from version to version. If the weighted least squares estimation method is
used in LISREL, the PRELIS version (Jöreskog & Sörbom, 1996c) also has to
be reported, because this preprocessor program produces the required estimates
of the asymptotic covariances of elements of the moment matrix to be analyzed.

If the researcher deviates from program default values in estimating the model,
the reader ought to know; for example, if nonautomatic starting values or a non-
standard convergence criterion or iteration method (cf. Jöreskog & Sörbom,
1996b) are being used.

The strategy for analyzing a postulated model is also important. One strat-
egy would be to estimate the full model at once; another would be first to es-
timate the measurement part of the model and, after possible modifications,
to analyze measurement and structural parts simultaneously. In the literature,
ample discussions about such multistep procedures can be found. See, for ex-
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ample, the exchanges between Anderson and Gerbing (1988, 1992) and
Fornell and Yi (1992a, 1992b), as well as Hayduk’s comments (1996).
Hayduk and Glaser (2000) presented a leading article on a much-debated
four-step procedure, followed by reflections of Mulaik and Millsap (2000)
and other contributors, which make up Volume 7, Number 1, ofStructural
Equation Modeling. Verschuren (1991) also gave an extensive treatment of
analysis strategies.

ESTIMATES OF THE MODEL

It is not feasible or necessary to present all estimation results as obtained with a
structural equation estimation program, not even when only default options are be-
ing used. A journal cannot have them all—and neither can its readers, for that mat-
ter. Given the model under study and the specific research questions posed, often
different aspects of estimation results need to be emphasized. Some general guide-
lines can be given though.

First of all, if any kind of irregularities occur in estimating the model, the reader
needs to know. This would include, for example, convergence problems, inadmis-
sible solutions, and indications of empirical underidentification (see Rindskopf,
1984). This is what Jöreskog and Sörbom (1989) call “examination of the solu-
tion” (p. 41): by inspecting estimates of parameters, standard errors, correlations
between parameter estimates, and multiple correlation coefficients, possible irreg-
ular, unexpected results are located and explicated.

After that, most often the following estimation results are of primary interest:
estimates of the fit of the model, estimates of model parameters, and estimates of
the (asymptotic) standard errors of parameter estimates. The presentation of these
results can be organized around four main questions.

• How well does the model fit the sample data? The researcher wants to know
whether there is not too large a discrepancy between the theoretical and the ob-
served relations. Some relevant statistics and indexes to evaluate the fit of the
model are therefore needed.

It is rather well known that it is not easy to evaluate the fit of a structural equa-
tion model to the sample data. For a number of guidelines and considerations, see,
for instance, Bagozzi and Li (1988), the second issue of Volume 25 ofMultivariate
Behavioral Research, a number of contributions in Bollen and Long (1993),
Marsh and Balla (1994), Ding, Velicer, and Harlow (1995), Hu and Bentler
(1995), Marsh, Balla, and Hau (1996), Marsh and Hau (1996), and Fan, Thomp-
son, and Wang (1999).

In making a reasonable choice about which indexes to report from the redun-
dant set of available measures and statistics, aspects of sample size, power, and the
complexity of the model must be kept in mind. It also makes a difference whether
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alternative, nested models are being assessed. Clearly, each type of index refers to
different aspects of model fit; see Boomsma (1996) for an overview.

The adequacy of conventional cutoff criteria for fit indexes—rules of thumb to
facilitate decision making—was studied by Hu and Bentler (1999). They made a
plea for a two-index presentation strategy, which includes the ML-based standard-
ized root mean squared residuals supplemented by some other index, for example
theoldTucker–Lewis index,which issimilar to thenon-normed fit index,or the root
mean squared error of approximation (RMSEA). Based on extensive Monte-Carlo
studies, they propose new cutoff values for various (combinations of) indexes. The
researcher should take notice of other findings from this study as well: Some in-
dexes, like the ML-based Tucker–Lewis index and the RMSEA, are less preferable
when the sample size is small, as they tend to overreject the population model.

Conditional on such notions, the following statistics or indexes should always
be considered: theχ2 goodness-of-fit test statistic (including the number of de-
grees of freedom, and itsp value), the estimated value of the RMSEA, or prefera-
bly a 90% confidence interval for the RMSEA, and features of the residuals, in
particular the standardized root mean squared residuals. It may happen, of course,
that theχ2 goodness-of-fit test statistic is relatively large, while at the same time
residuals are very small. Such seemingly contradicting results need not be discour-
aging; a search for possible explanations might be revealing.

If required, it is feasible to summarize the size of squared multiple correlation
coefficients (R2 ), which are indicative of “the fit of separate equations,” or for the
percentage of variance accounted for. Notice that Saris and Stronkhorst (1984) de-
manded percentages no smaller than 90%, which is a burden in social science ap-
plications, for sure. However, it has been noticed that Goldberger (1991), for
example, was far less demanding on the size ofR2s; see also O’Grady (1982). Fur-
ther reference is made to Hoyle and Panter (1995), who discussed these matters
more extensively from a reporting point of view.

If a number of nested models are compared, the results of chi-square difference
tests should be reported in a surveyable way (cf. Bollen, 1989), along with some
comparative indexes, like Akaike’s Information Criterion, Schwarz’ Bayesian In-
formation Criterion, or single sample approximations of cross-validation indexes
(Browne & Cudeck, 1989; De Gooijer, 1995; De Gooijer & Koopman, 1988).
Usually from the set of nested models a “final” model is selected. In most cases, it
is only for this model that more detailed information is given.

• If a model gives not too bad an approximation of the observed structures, the
next question refers to the size of the model parameters. How strong are the postu-
lated relations between variables of primary interest? Therefore, estimates of the
unknown parameters,$ ( , , , )θ j j t= …1 2 , unstandardized, standardized, or both, are
reported. Which parameters to select here depends on the size of the model and the
main research questions. For a small model, all estimates might be presented. If in-
direct effects are of importance, their estimates should be included too.
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• Given the parameter estimates, it is uncertain to what extent they might fluc-
tuate from sample to sample. An answer is needed to the following question: How
reliable are the parameter estimates? Therefore, estimates of the standard errors of
the (primary) parameter estimates, denoted as$( $ )s jθ , are presented.

• Given estimates of parameters and their corresponding standard errors, under
appropriate circumstances hypothesis tests regarding specific population parame-
ters might be performed. For example, the question might be whether a parameter
deviates significantly from zero. Estimates of the test statistics for parameter esti-
mates, the so-calledt values, defined ast sj j j( $ ) $ / $( $ )θ θ θ= , are reported to examine
such hypotheses. Some authors, like Bollen (1989), Kaplan (1989), and Bentler
(1995), referred to these values aszscores, because the statistic is assumed to have
approximately a standard normal distribution.

Whetherpvalues should be given too is a matter of statistical taste. Recall that pa-
rameter estimates are mutually dependent; see Kaplan (1980), Cudeck and O’Dell
(1994), and Hancock (1999) on the control of the probability of a Type I error. The
size of thet values is often sufficient to give a rough indication of the statistical signif-
icance of model parameters , which should be evaluated along with the substantive
relevance of their estimates. The occurrence of huget values deserves special consid-
eration. Significance indicators like asterisks should be avoided throughout.

In the SEM literature, the issue of prediction is hardly ever raised, but if predic-
tion indeed would be the goal of the modeling process, the focus should be on the
actual size and sign of the estimates and on their interpretation and reliability. See
Kaplan and Elliott (1997) for an example in the context of examining the predic-
tive validity of indicator variables. In such a situation, but also in general, the fit of
the model should never be predominant in describing results.

EVALUATION AND MODEL MODIFICATION

Once the model has been estimated, the researcher should evaluate the results of the
analysis. This phase in the empirical cycle is characterized by feedback to the theo-
retical postulates that constituted the model in the first place (see Figure 1), which
means that the results have to be evaluated within the theoretical nomological
framework that gave rise to the model under study. Craftsmanship in theory evalua-
tion and theory building (i.e., model modification) is required here. It is almost an
art to find a fragile balance between dutiful theoretical considerations and statisti-
cal interpretations of single sample estimates and to be concise and to the point in
the description of such treacherous rope-walking.

If the model fits reasonably well, the question is raised as to how close parame-
ter estimates match the theoretical expectations in terms of both sign and size. If
appropriate, it could be decided to simplify the postulated model by deleting some
structural relations (fixing parameters to zero). On the other hand, if the model has
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a bad fit, model expansions may come into focus (adding some hypothesized rela-
tions). Beforehand it should be realized, however, that apart from real specifica-
tion errors there are potentially many other reasons why a model may not fit: small
sample size, nonnormality, missing data, multilevel data, and so on. Kaplan (1990)
argued cogently that before considering some type of model modification, these
other reasons need to be ruled out first.

Both in the case of model simplification and model expansion, the postulated
modifications should be defensible primarily from a theoretical point of view. Of
course, statistical information from the estimated model could be of help too: Esti-
matedtvaluesmight suggest certainsimplifications,andestimatedmodification in-
dexes along with expected parameter change statistics could give clues to specific
model expansions. Kaplan (1990, 1991), for example, strongly recommended a
combineduseofboth themodification indexandtheexpectedparameterchangesta-
tistic for model evaluation and modification. It cannot be emphasized enough, how-
ever, thatpurelydata-drivendecisions tomodelmodificationsare indefensible:The
addition or deletion of a relation or association should have to make substantive
sense, and parameters should ideally have clear interpretations that can directly be
linked to subject-matter questions (cf. Cox & Wermuth, 1996). One major pitfall is
when researchers allow error variances to correlate, solely as a tempting means to
improve fit, without providing an empirical or theoretical rationale.

In a process of model modification, subsequent changes are preferably made
one at a time. Changing one parameter most often triggers changes in many other
parameters as well. It’s like touching a spider’s web: a minor parameter change
can have significant and often unpredictable effects in any part of the model. A
careful, single-step modification approach is therefore recommended (see also
Kaplan & Wenger, 1993).

In a process of purely data-driven model modification, it is an illusion to expect
that the researcher ends up with an approximately correct model, even when the
correct model is part of the set but not the baseline model. There is empirical evi-
dence that this is most frequently not the case (see Luijben, 1989; Luijben &
Boomsma, 1988; MacCallum, 1986; Silvia & MacCallum, 1988).

If after a number of model modifications a decision is made to stick to a “final”
model, it is the researcher’s responsibility to answer questions about the validity of
that model. Serious attempts should be made to realize some form of cross-valida-
tion with respect to the set of models considered in a sequence of model evaluations.
Camstra and Boomsma (1992) gave an overview of cross-validation techniques in
SEM;Bentler (1980)andMacCallum,Roznowski,Mar,andReith (1994)discussed
partial cross-validation techniques. When cross-validation procedures are being
used for the purpose of model selection, Camstra (1993, 1998) showed empirically
that the single-sample approximations of cross-validation indexes, as proposed by
DeGooijerandKoopman(1988),canbehighlyeffectivecomparedtoother indexes,
like the information criteria of Akaike or Schwarz, for example.
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To test the validity of the proposed modified models, ideally an independent,
fresh sample from the same population should be available (e.g., even a validation
sample hold out from the complete set of observations, while doing model explo-
ration on the other, independent calibration part first). By testing modified models
on the same sample data, pitfalls like chance capitalization can be very serious (see
MacCallum, Roznowski, & Necowitz, 1992). It is a small step then to move from a
confirmatory statistical analysis to an adventurous data exploration.

In conclusion, it should be obvious that explorative modification procedures
cry for some sort of cross-validation (see also Browne & Cudeck, 1989; Cudeck &
Browne, 1983). The concerns about the validity of a model after exploratory
model modifications are seemingly less serious if a fixed set of plausible models
based on solid theory is postulated from the start, but they are still present. A state-
ment of Steiger (1990) reflected the relative importance of replication and
cross-validation most forcefully: “An ounce of replication is worth a ton of infer-
ential statistics” (p. 176).

During the process of model modification, and in reflection of some final
model, questions regarding equivalent models might be raised again: Are there
equivalent models, not too much in contradiction with theoretical postulates, that
fit the sample data equally as well as the final model? Breckler (1990) claimed that
it is rarely noted that the fit of a favored model is identical for a potentially large
number of equivalent models. Problems related to the occurrence of equivalent
models are discussed by MacCallum, Wegener, Uchino, and Fabrigar (1993), Wil-
liams, Bozdogan, and Aiman-Smith (1996), and Hayduk (1996). The recurrent
and primary criterion in model selection and evaluation of equivalent models is the
congruity with a theoretical perspective as presented in advance.

A final issue of concern in the evaluation and modification phase of SEM is sta-
tistical power analysis (Kaplan, 1995; MacCallum, Browne, & Sugawara, 1996;
Saris & Satorra, 1993; Saris, Satorra, & Sörbom, 1987; Satorra & Saris, 1985).
There is ample evidence that the power of model tests depends on specific model
characteristics. Saris and Satorra (1987) emphasized that a model test cannot be
used without knowledge of the power of the test and that the varying sensitivity of
the test for different types of specification errors leads to serious problems. In ap-
plied research this issue is seldomly addressed, let alone designated as a leading
criterion in the guidance of model modification. One reason is that it is rather diffi-
cult here to formulate general directives on how to proceed and how to report.
Saris and Stronkhorst (1984) distinguished four different test situations and dis-
cussed possible actions related to power and model fit. Although such consider-
ations are likely to be made a posteriori, after estimating the model, it seems far
more adequate to reflect on the power issue in relation to the sample size a priori,
before collecting the data.

In any event, the process of model modification and its theoretical and statisti-
cal justification should be properly described. The steps leading from a basic
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model, or a sequence of models, to some final structure should not be hidden. It is
difficult though, to give a general recommendation as to the extent to which this
process should be covered, or what to report at each step. Clearly, both subject
matter and statistical considerations have to be disclosed and exposed concisively.

DISCUSSION

In the preceding section, quite a bit of model evaluation and interpretation came
into play in the discussion of the process of model selection and model modifica-
tion. Therefore, there is some inevitable overlap with that section when moving to a
general, concluding discussion.

The researcher can evaluate and interpret the implications of the results in an
overview. It seems appropriate to start the discussion with a summary of the sub-
stantive conclusions of the analysis. In the case of a strictly confirmative analysis,
a conclusive statement should be made about the extent to which the original theo-
retical model is supported or falsified. If the analysis was more exploratory in
character, or if a number of model modifications were made, the conclusions
should be far more tentative. The firmness of conclusions very much depends on
the researcher’s position on a confirmatory–exploratory type of dimension; this is
similar to the distinction Jöreskog and Sörbom (1996a) made for three situations:
(a) a strictly confirmative situation, (b) testing alternative or competing models,
and (c) a model generating situation.

In a summarized feedback to the theory, the research questions posed at the start
of the study have to be answered and reflected on (see Figure 1). Feedback to simi-
lar or related published work of others should be given by discussing similarities
and differences between earlier and present results. Viable explanations for differ-
ences, contradictions, or paradoxes need to be presented with conclusive argu-
ments, and as briefly as possible.

Further general guidelines for this descriptive phase can be found in thePubli-
cation Manual of the American Psychological Association(1994). According to
that manual, in the discussion section researchers should be guided by three ques-
tions: “What have I contributed here? How has my study helped to resolve the
original problem? What conclusions and theoretical implications can I draw from
my study?” (p. 19).

It is encouraged to pay some attention to the important but difficult question
regarding the discrepancy between the simplified, formalized theoretical model
and the actual operating processes that govern the phenomena under study in the
real empirical world. This is what Bollen (1989) called “model-reality consis-
tency” (p. 67ff.). If necessary and appropriate, aspects of causal inference might
be touched on; see Sobel (1994, 1995, 1996) for some first introductions and an
overview and Cox (1992) or Cox and Wermuth (1996) for some cautions to be
employed.
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A concise summary of weak and strong spots in the analysis can be presented.
Given the results of the analysis, directives or concrete plans for future research,
which might include aspects of cross-validation and replication, are briefly men-
tioned. By now the investigations are about to be returned to the first phase of the
empirical research cycle.

It is stressed that the discussion section should not be too long. It can be ex-
pected that a curious reader tends to read the abstract of an article first, and that an
immediate next jump is made to the discussion section. There, the reader expects
to find a more elaborate summary of the conclusions and a recapitulation of the
positive and the negative aspects of the research, both from a theoretical and meth-
odological and statistical point of view.
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